• Title/Summary/Keyword: voltage capacity

Search Result 978, Processing Time 0.027 seconds

A Study on the Diagnostic Algorithm for Arc Flash of Power Equipment (전력기기의 아크 플래시 진단 알고리즘에 관한 연구)

  • Lee, Deok-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.449-453
    • /
    • 2016
  • The amount of electrical energy has been increased with the rapid development of the industrial society. Accordingly, operating voltage of the power equipment and facility capacity are continuously increasing. Development trends of recent high-voltage electrical equipment are ultra high-voltage, large-capacity and compact. Early diagnosis of a failure of the power plant has been emerging as an important task as to supply high quality power to users. In this study, we have tried to develope an algorithm for distinguishing an arc fault signal generated in the power plant by using UV sensor.

Voltage Drop and Power Factor Compensation Relation of Induction Motor applied to Logistics System (물류 시스템 적용 유도전동기의 전압강하와 역률 보상 관계)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.155-159
    • /
    • 2018
  • Recently, the expansion or establishment of facilities for the logistics system is increasing. Conveyor facilities play a major role in sorting and transporting logistics. Induction motors are widely used for the operation of these conveyor systems. In the logistics system, a large number of induction motors are used. These motors have a considerable distance from the power source side and have a low power factor. The installation position for the power factor compensation of the induction motor is very important. Since the voltage drop depends on the length of the line, it is an important parameter in capacitor capacity determination for power factor compensation. The capacity of the capacitors installed to compensate the power factor of the inductive load should be designed to the extent that self-excitation does not occur. In this study, we analyze the method of compensating the proper power factor considering the voltage drop and the installation position of the induction motor in the logistics system.

Development of the 300kVA Large Capacity IGBT UPS (IGBT를 적용한 300kVA급 대용량 무정전전원장치 개발)

  • Byun, Y.B.;Kim, T.J.;Joe, K.Y.;Park, S.J.;Kim, C.U.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2057-2059
    • /
    • 1998
  • In order to maintain a high quality output voltage, conventional UPS systems use complex filters with large passive components. To overcome this drawback, real time feedback control schemes have been invested. However, these techniques require a high inverter switching frequency to dynamically adapt to changing load conditions reduce harmonics of the output voltage, thereby rendering the system inadequate for high power applications. This paper presents real time digital signal processor(DSP) control of a large capacity UPS system feeding nonlinear loads to provide a sinusoidal inverter output voltage, unity input power factor, low bus voltage ripple, and excellent transient response.

  • PDF

Effects of stray inductance on low volatge inverter for medium capacity (저압 중용량 인버터에서의 기생 인덕턴스에 의한 영향)

  • Choi, C.S.;Chun, T.W.;Kim, S.Y.;Kim, H.K.
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.61-63
    • /
    • 2008
  • An inverter with large capacity has been demanded at a factory automation and diffusion of the energy saving work. As the capacity of inverter is larger, the stary inductance has much influence on both the di/dt of IGBT current, and voltage stress across IGBT. Also, the life of the snubber capacitor may be shortened due to overheating of the snubber capacitor. In this paper, a planar busbar which consists of two layers is applied to N700-series inverter in order to minimize stray inductance. The voltage stress across IGBT is changed by both the DC busbar structure and the capacity of snubber capacitor.

  • PDF

An Expert System for Optimal Load Transfer in Distribution Systems (배전계통에서의 최적 부하절체를 위한 전문가 시스템)

  • 문영현;최병윤;김세호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.903-911
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults and scheduled outage, operators need to identify neighboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer in fault restoration and scheduled outage. Also, the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss are considered. This expert system can propose the optimal load transfer method by analyzing the system state and considering the constraints.

  • PDF

Design of Narrowband Voltage Controller for Large Capacity Uninterruptible Power Supply with Low Switching Frequency (낮은 스위칭 주파수를 갖는 대용량 무정전전원장치를 위한 협대역 전압제어기 설계)

  • Yoon, Chun-gi;Cho, Younghoon;Lim, Seung-beom
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.149-150
    • /
    • 2015
  • This paper presents narrowband voltage controller for large capacity UPS system with low switching frequency. The proposed controller is repetitive controller applicable to low sampling. The controller reduces the control error for nonlinear load and improve efficiency. The proposed controller is verified through the experiment using 40kW UPS inverter.

  • PDF

Development of ZnO Varistor for Distribution Surge Arrester (18kV, 5kA) (배전급 피뢰기(18kV, 5kA)용 ZnO 바리스터 소자 개발)

  • 박춘현;윤관준;조이곤;정세영;서형권
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.212-216
    • /
    • 2000
  • ZnO varistors for distribution surge arrester (18kV, 5kA) were developed and tested microstructure and electrical characteristics. Microstructure of ZnO varistor was consisted of ZnO grain, spinel phase and Bi-rich phase. Average grain size of ZnO varistor was $\mu\textrm{m}$ Reference voltage and lightning impulse residual voltage of ZnO varistor exhibited a good haracteristics above 5.5kV and below 11.56kV, respectively. Consequently, discharge capacity which is the most important characteristics of ZnO varistor for surge arrester exhibited excellent properties above 70kA at twice high-current impulse test. Moreover, variation rate of reference voltage and lightning impulse residual voltage showed below 5% and 2% after high-current impulse test, respectively. Leakage current and watt loss of ZnO varistor will not increase during accelerated aging test at stress condition, such as 3.213kV/$115^{\circ}C$/1000h.

  • PDF

A study for the system voltage and reactive power control (계통전압.무효전력 제어에 관한 연구)

  • 송길영
    • 전기의세계
    • /
    • v.14 no.3
    • /
    • pp.10-17
    • /
    • 1965
  • This paper presents a method of the voltage-reactive power control in the long and short range operations and introduces a conception, "optimum control pattern." The optimum control pattern, aiming at the over-all system control, is defined as the optimum voltage distribution which minimizes the system operating cost under the conditions that the specified power be supplied and the system voltage be kept within the specified bounds. The following procedure was adopted to obtain this optimum pattern. In the first place, a power system was divided into three blocks, namely, load, substation and generator. Lagrange's, multiplier method is applied to each block in turn, paying attention only at the operating voltage distribution. Phase angles at each bus are then modified so that the continuity of active power is maintained. This procedure may be called "block relaxation method with Lagrange's multipliers." In a long range operation, this control pattern determines the optimum installation capacity of reactive power sources. In a short range operation, it also gives the reference state of real time control and the optimum switching capacity of reactive power souces. The real time control problem is also studied from the standpoint of cooperation of control devices such as generators, shunt capacitors, shunt reactors and ratio load controllers. A proposal for the real time control will contribute to the automation of power system operation in the near future. in the near future.

  • PDF

22.9kV GIS Modeling and Transient Recovery Voltage Analysis Using EMTP/RV (EMTP/RV를 이용한 22.9kV GIS 모델링과 과도회복전압 해석)

  • Jyung, Tae-Young;Baek, Young-Sik;Jeong, Ki-Seok;Park, Ji-Ho;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1199-1205
    • /
    • 2010
  • The recent power system is required to a large size of facilities and high power technology according to increasing power demand. However, it could lead to spoiling the beauty of city and environment problem. The miniaturized facilities with large capacity such as GIS have been required in recent power system. The GIS(Gas Insulated Substation) using the SF6 insulation gas enables to miniaturize facilities with large capacity with high insulation performance. However, the substation installed GIS has required to new design model which is different from the conventional substation. The TRV(Transient Recovery Voltage) analysis on simple circuit may applied by differential equation. However, in case of relatively complicated system, EMTP(Electro Magnetic Transients Program) mainly has been used to design and simulate for transient analysis. This paper mainly design the 22.9 kV GIS system and analyze the transient recovery voltage of main circuit breaker using EMTP/RV. It also enables to easily design the other substation installed GIS with same maker and voltage level because the proposed GIS model consists of separated modules such as busbar, circuit breaker, bushing, CT, PT etc. Eventually, it contributes to comfortably compare the interrupting performance of circuit breaker and system TRV corresponding to the substation system configuration.

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.