• Title/Summary/Keyword: voltage capacity

Search Result 978, Processing Time 0.03 seconds

LiPB Battery SOC Estimation Using Extended Kalman Filter Improved with Variation of Single Dominant Parameter

  • Windarko, Novie Ayub;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • This paper proposes the State-of-charge (SOC) estimator of a LiPB Battery using the Extended Kalman Filter (EKF). EKF can work properly only with an accurate model. Therefore, the high accuracy electrical battery model for EKF state is discussed in this paper, which is focused on high-capacity LiPB batteries. The battery model is extracted from a single cell of LiPB 40Ah, 3.7V. The dynamic behavior of single cell battery is modeled using a bulk capacitance, two series RC networks, and a series resistance. The bulk capacitance voltage represents the Open Circuit Voltage (OCV) of battery and other components represent the transient response of battery voltage. The experimental results show the strong relationship between OCV and SOC without any dependency on the current rates. Therefore, EKF is proposed to work by estimating OCV, and then is converted it to SOC. EKF is tested with the experimental data. To increase the estimation accuracy, EKF is improved with a single dominant varying parameter of bulk capacitance which follows the SOC value. Full region of SOC test is done to verify the effectiveness of EKF algorithm. The test results show the error of estimation can be reduced up to max 5%SOC.

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.

A semispherical SQUID magnetometer system using high sensitivity double relaxation oscillation SQUIDs for magnetoencephalographic measurements

  • Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kim, Kwoong;Park, Yong-Ki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.

A Study on the Improved Load Sharing rate in Paralleled Operated Lead Acid Battery by Using Microprocessor (마이크로 프로세서를 이용한 축전지의 병렬 운전 부하분담률 개선에 관한 연구)

  • 이정민
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.493-497
    • /
    • 2000
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy without a mechanical process. Unit cells are connected in series to obtain the required voltage while being connected in parallel to organize capacity for load current. Because the voltage drop down in one set of battery is faster than in two one it may result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However when the system being shutdown. However when the system being driven in parallel a circular-current can be generated,. It is shown that as a result the new batteries are heated by over-charge and over-discharge and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper we can detect the unbalance current using the microprocessor and achieve the balance current by adjusting resistance of each set, The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller (적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Kang, Sung-Joon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

Aging Analysis and Reconductoring of Overhead Conductors for Radial Distribution Systems Using Genetic Algorithm

  • Legha, Mahdi Mozaffari;Mohammadi, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2042-2048
    • /
    • 2014
  • In medium voltage electrical distribution networks, reforming the loss reduction is important, and in line with this, the issue of system engineering and use of proper equipment Expansion of distribution systems results in higher system losses and poor voltage regulation. Therefore, an efficient and effective distribution system has become more important. So, proper selection of conductors in the distribution system is crucial as it determines the current density and the resistance of the line. Evaluation of aging conductors for losses and costs imposed in addition to the careful planning of technical and economic networks can be identified in the network design. In this paper the use of imperialist competitive algorithm; genetic algorithm; is proposed to optimal branch conductor selection and reconstruction in radial distribution systems planning. The objective is to minimize the overall cost of annual energy losses and depreciation on the cost of conductors to improve productivity given the maximum current carrying capacity and acceptable voltage levels. Simulations are carried out on 69-bus radial distribution network using genetic algorithm approaches to show the accuracy as well as the efficiency of the proposed solution technique.

An Algorithm Design and Information System Development for Production Scheduling under Make-to-Order Environments (수주생산환경에서 생산일정계획 알고리듬 설계 및 정보 시스템 구현: 변압기 제조공정의 권선공정 적용사례)

  • Park, Chang-Kwon;Jang, Gil-Sang;Lee, Dong-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.185-194
    • /
    • 2003
  • This paper deals with a realistic production scheduling under a make-to-order production environment. The practical case is studied on the transformer winding process in the 'H' company. The transformer winding is a process that rolls a coil that is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. This process occupies an important position among the production processes in the transformer manufacturing company. And this process is composed of parallel machines with different performances according to the voltage capacity and winding type. In this paper, we propose a practical heuristic algorithm for production scheduling to satisfy the customer’s due date under a make-to-order production environment. Also, we implement the production scheduling system based on the proposed heuristic algorithm. Consequently, the proposed heuristic algorithm and the implemented production scheduling system are currently working in the transformer production factory of the ‘H’ company.

Characteristics Analysis of Power Capacitor at Sag & Swell (순간적인 전압강하 및 순간 전압 융기 발생시 전력용 커패시터의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.21-28
    • /
    • 2009
  • Power capacitor has been used to compensate for the low power factor of inductive load and to reduce harmonics generated by the power conversion device with reactor. Power quality is mainly referred to the voltage quality and it is very important for the stable operation of load. But if voltage rms is temporary changed, it acts on capacitor as an electrical stress. In this paper, we analyzed that capacitor can be given by voltage, current and capacity's variance under the sag and swell condition. If reactor is connected at capacitor, sag can be aside from the question. But it can act an amount of stress on capacitor in the swell region.

Study of High Efficiency LLC Resonant Converter for a Battery Charger of Emergency Electric Power Generator Control System (비상용 발전기 제어시스템의 배터리 충전기를 위한 고효율 LLC 공진형 컨버터의 연구)

  • Lee, Joonmin;Park, Min-Gi;Lee, Young Keun;La, Jae-Du
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.93-100
    • /
    • 2013
  • Generally, the conventional battery charging system using an analog method has the large, heavy hardware and low efficiency. Also, it has the disadvantage that it is necessary to replace the control circuit on the basis of the characteristic curve of the specific battery cell. The proposed programmable digital LLC resonant charging system use high efficiency control system(CC-CV), and has characteristic a small hardware and advantage that a digital programming of the voltage, current, and battery capacity characteristics can be flexible. The system proposed the use of Half-bridge LLC resonant converter is possible to improve efficiency and reduce switching losses by using ZVS topology. Further, a constant voltage - constant current(CC-CV) control algorithm apply to the charger which using a buck converter. The performance of the proposed system is demonstrated through experiments.

A Study on the TRV(BTF) of Circuit Breakers According to Install Current Limit Reactors (345kV 고장전류 저감을 위한 한류리액터 설치시 차단기 TRV(모선 고장시) 검토)

  • Kwak, J.S.;Park, H.S.;Shim, E.B.;Ryu, H.Y.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.368-370
    • /
    • 2005
  • Due to the tendency towards large capacity and complexity of power system, an enhancement of power system equipment make a system impedance to be low in power system. Generally if an equivalent impedance of system becomes lower, a system stability will be better. But the fault current becomes very larger. The 345kV ultra-high voltage system will use current limit reactors(CLR) in a transmission line or a bus in substation to limit the magnitude of fault current. The CLR makes a significant contribution to the severity of the transient recovery voltage(TRV) experienced by feeder and bus circuit breakers on clearing feeder faults. Based on the conclusions of an investigation of actual circuit breaker failures while performing this duty, the mitigation of the transient recovery voltage associated with the reactors is described. Therefore in this article we simulated the TRV by EMTP at Bus Terminal Fault.

  • PDF