• Title/Summary/Keyword: voltage and frequency controller

Search Result 403, Processing Time 0.025 seconds

A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL

  • Lin, Zhenjun;Huang, Shenghua;Wan, Shanming
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1176-1189
    • /
    • 2016
  • In this paper, a novel quasi-direct power control (Q-DPC) scheme based on a resonant frequency adaptive proportional-resonant (PR) current controller with a variable frequency resonant phase locked loop (RPLL) is proposed, which can achieve a fast power response with a unity power factor. It can also adapt to variations of the generator frequency in T-type Three-level shaft synchronous generator (SSG) converters. The PR controller under the static α-β frame is designed to track ac signals and to avert the strong cross coupling under the rotating d-q frame. The fundamental frequency can be precisely acquired by a RPLL from the generator terminal voltage which is distorted by harmonics. Thus, the resonant frequency of the PR controller can be confirmed exactly with optimized performance. Based on an instantaneous power balance, the load power feed-forward is added to the power command to improve the anti-disturbance performance of the dc-link. Simulations based on MATLAB/Simulink and experimental results obtained from a 75kW prototype validate the correctness and effectiveness of the proposed control scheme.

A sub-optimal controller design for constant-frequency series resonant converter with buck type pre-regulator (벅형 프리레귤레이터를 가진 일정주파수 직렬공진변환기를 위한 새로운 준최적제어기 설계)

  • 안희욱;고정호;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.96-100
    • /
    • 1990
  • Dynamic modelling and controller design technique for constant-frequency series resonant converter with buck type preregulator are mainly described in this paper. An equivalent circuit model is derived and a state equation is developed from this model. To improve the dynamic performance, a negative feedback of inductor current is added to the proportional and integral control of output voltage. Furthermore, an optimization technique with prescribed eigenvalue region is applied to the determination of feedback gains. With the presented design method, much better dynamic performance can be obtained.

  • PDF

Repetitive Controller for High Power UPS System with Low Switching Frequency (낮은 스위칭 주파수를 갖는 대용량 무정전 전원장치를 위한 반복제어기)

  • Lee, Taeyeong;Cho, Younghoon;KIM, JISU;BYEON, YONGSEOP
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.477-478
    • /
    • 2016
  • This paper introduces a repetitive controller in low switching frequency applications. Generally, A high power UPS system has a high rated current. And the system usually consist of high power IGBT has a tail current. So the high power UPS system operates in low switching frequency because of this tail current. The repetitive controller improve THD of output voltage or current by reducing the steady state error. The effect of the repetitive controller is proved by simulations.

  • PDF

Design Methodology of Passive Damped LCL Filter Using Current Controller for Grid-Connected Three-Phase Voltage-Source Inverters

  • Lee, Jun-Young;Cho, Young-Pyo;Kim, Ho-Sung;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1178-1189
    • /
    • 2018
  • In grid-connected voltage-source inverters (VSIs), when compared with a simple inductive L filter, the LCL filter has a better performance in attenuating the high frequency harmonics caused by the pulse-width modulation of power switches. However, the resonance peaks generated by the filter inductors and capacitors can make a system unstable. In terms of simplicity and filter design cost, a passive damping method is generally preferred. However, its high power loss and degradation in high frequency harmonic attenuation are significant demerits. In this paper, a mathematical design solution for a passive LCL filter to derive filter parameters suppressing the high frequency current harmonics to 0.3% is proposed. The minimum filter inductance can be obtained to reduce the size of the filter. Furthermore, a minimum damping resistance design considering a current controller is analyzed for a stable closed-loop system. The proposed design method is verified by experimental results using a 5-kW three-phase prototype inverter.

A Study of Precision High Voltage Generator for Ion Injection (이온주입용 정밀고압 발생장치 연구)

  • 유동욱;정창용;백주원;조정구;조기연;김학성;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.158-161
    • /
    • 1998
  • A precision high voltage generator for ion injection is implemented on HFZVS-PSCI (High Frequency Zero-Voltage-Switching Phase-Shift-Controlled Inverter). Some practical aspects of implementing precision high voltage generator with HFZVS-PSCI, such as a HFHV transformer, multiflier, and precision CR divider are discussed. The results show that the generator under the Phase-Shift-Controller has a fast dynamic response, low ripple voltage, and high accuracy.

  • PDF

Control and Implementation of Dual-Stator-Winding Induction Generator for Variable Frequency AC-Generating System

  • Bu, Feifei;Hu, Yuwen;Huang, Wenxin;Shi, Kai
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.798-805
    • /
    • 2013
  • This paper presents the control and implementation of the dual-stator-winding induction generator for variable frequency AC (VFAC) generating system. This generator has two sets of stator windings embedded into the stator slots. The power winding produces the VFAC power to feed the loads, and the control winding is connected to the static excitation controller to control the generator for output voltage regulation with speed and load variations. On the basis of the idea of power balance, an instantaneous slip frequency control (ISFC) strategy using the information of both the output voltage and the output power is used in this system. A series of experiments is carried out on a 15 kW prototype for verification. Results show that the system has good static and dynamic performance in a wide speed range, which demonstrates that the ISFC strategy is suitable for this system.

A Study on the Digital Control of a ZVS-Full Bridge Converter (ZVS-Full Bridge Converter의 디지털 제어에 관한 연구)

  • 최현식;이재학
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.96-102
    • /
    • 1998
  • This paper describes the design of the digital controller for Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS). Although digital control techniques are widely used in the area of inverters and motor drives, their use for the control of high-frequency switching power supply is still rare. Therefore, this paper presents design method of digital controller of Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS) and compares with conventional analog controller. The controller design is optimized by running computer simulation with the MATLAB numerical calculation package.

  • PDF

DSP Based Control of Interleaved Boost Converter

  • Sudhakarababu C.;Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.180-189
    • /
    • 2005
  • In this paper a DSP based control scheme for the interleaved boost converter is presented. The mathematical model for the interleaved boost converter operating in a continuous inductor current mode is developed. A state-space averaging technique is used for modeling the converter system. A fixed frequency sliding mode controller is designed to ensure current distribution between the two converter modules and to achieve the load voltage regulation simultaneously. Necessary and sufficient conditions, using variable structure theory, are derived for the sliding mode to exist. The range of sliding mode controller coefficients is also determined. The designed controller capability, load distribution among the individual boost cells and load voltage regulation against source and load disturbances, are demonstrated through PSIM simulation results. A real-time controller based on ADMC401 DSP is developed. Experimental results are provided to validate the proposed control scheme.

Design of A Digital Controller with Time Delay for Dynamic Voltage Restorers (동적전압보상기를 위한 시간지연을 고려한 디지털 제어기 설계)

  • Kim Hyosung;Lee Sang-Joon;Sul Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.36-40
    • /
    • 2003
  • On analyzing the power circuit of a DVR system, control limitations and control targets are presented for the voltage compensation in DVRs. The control delay in digital controllers increases the dimension of the system transfer function one degree higher which makes the control system more complicate and more unstable. Based on the power stage analysis, a novel controller for the compensation voltages in DVRs is proposed by a feedforward control scheme. Proposed controller works well with the time delay in the digital control system. This paper also proposes a guide line to design the control gain, appropriate output filter parameters and inverter switching frequency for DVRs in digital controllers. Proposed theory is verified by an experimental DVR system with a typical digital controller.

  • PDF

Co-design of the LCL Filter and Control for Grid-Connected Inverters

  • Zhang, Yu;Xue, Mingyu;Li, Minying;Kang, Yong;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1047-1056
    • /
    • 2014
  • In most grid-connected inverters (GCI) with an LCL filter, since the design of both the LCL filter and the controller is done separately, considerable tuning efforts have to be exerted when compared to inverters using an L filter. Consequently, an integrated co-design of the filter and the controller for an LCL-type GCI is proposed in this paper. The control strategy includes only a PI current controller and a proportional grid voltage feed-forward controller. The capacitor is removed from the LCL filer and the design procedure starts from an L-type GCI with a PI current controller. After the PI controller has been settled, the capacitor is added back to the filter. Hence, it introduces a resonance frequency, which is identified based on the crossover frequencies to accommodate the preset PI controller. Using the proposed co-design method, harmonic standards are satisfied and other practical constraints are met. Furthermore, the grid voltage feed-forward control can bring an inherent damping characteristic. In such a way, the good control performance offered by the original L-type GCI and the sharp harmonic attenuation offered by the latter designed LCL filter can be well integrated. Moreover, only the grid current and grid voltage are sensed. Simulation and experimental results verify the feasibility of the proposed design methodology.