• Title/Summary/Keyword: volcanic explosivity index

Search Result 9, Processing Time 0.024 seconds

The Distribution of Volcanoes around the Korean Peninsula: An Analysis based on the Possibility of Affecting Korea (한반도 주변 화산의 분포 : 국내 영향 가능성을 중심으로)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Yun, Sunghyo;Lee, Kyu-Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1311-1322
    • /
    • 2016
  • Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and past eruptional histories of these volcanoes. We created a database of 285 volcanoes around the Korean Peninsula, and then identified a high-risk groups of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, the type of rocks at risk of eruption, the distance from Seoul, and high VEI (volcanic explosivity index). In addition, we identified the 10 volcanoes that should be given the highest priority. We selected them through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes.

A Preliminary Study on Calculating Eruptive Volumes of Monogenetic Volcanoes and Volcanic Hazard Evaluation in Jeju Island (제주도 단성화산의 분화량 계산과 화산재해 평가에 대한 예비연구)

  • Ko, Bokyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • Eruptive volumes of three monogenetic volcanoes (Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone) with the youngest eruption age are calculated using the model, applied to Auckland Volcanic Field in New Zealand, to investigate the volcanic eruption scale and to evaluate volcanic hazard of Jeju Island. Calculated eruptive volumes of the volcanoes are $24,987,557m^3$, $9,652,025m^3$, and $11,911,534m^3$, respectively, and the volumes include crater infill, tuff ring (tuff cone), scoria cone, and lava flow. Volcanic explosivity indices of Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone are estimated based on the eruptive volumes to be 3, 2, and 3 respectively, and eruption type is Strombolian to Surtseyan. It is assumed that the amount of emitted sulfur dioxide gas is $2-8{\times}10^3kt/y$ according to the correlation between volcanic explosivity index and volcanic sulfur dioxide index. Recent age dating researches reveal evidences of several volcanic activities during the last 10,000 years indicating the possible volcanic eruption in Jeju Island in the near future. Therefore, it is necessary for appropriate researches regarding volcanic eruption of the island to be accomplished. In addition, establishment of the evaluation and preparation system for volcanic hazard based on the researches is required.

Selecting Hazardous Volcanoes that May Cause a Widespread Volcanic Ash Disaster to the Korean Peninsula (한반도에 광역화산재 재해를 발생할 수 있는 위험화산의 선정)

  • Yun, Sung-Hyo;Choi, Eun-Kyeong;Chang, Cheolwoo
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.346-358
    • /
    • 2016
  • This study built the volcano Data Base(DB) of 289 active volcanoes around the Korean Peninsula, Japan, China (include Taiwan), and Russia Kamchatka area. Twenty nine more hazardous volcanoes including Baekdusan, Ulleungdo and 27 Japanese volcanoes that can cause a widespread ash-fall on the Korean peninsula by potentially explosive eruption were selected. This selection was based on the presence of volcanic activity, whether or not containing dangerous explosive eruption rock types, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) 4 or more. The results of this study are utilized for screening high-risk volcanoes that may affect the volcanic disaster caused by a widespread fallout ash. By predicting the extent of spread of ash caused by these hazardous volcanic activities and by analyzing the impact on the Korean peninsula, we suggest that it should be used for helping to predict volcanic ash damages and conduct hazards mitigation research as well.

A Case Analysis of Volcanic Ash Dispersion under Various Volcanic Explosivity Index of the Mt. Baegdu (백두산 분화 강도에 따른 화산재 확산 사례 분석)

  • Lee, Soon-Hwan;Jang, Eun-Suk;Lee, Hyun-Mi
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.280-293
    • /
    • 2012
  • In order to clarify the characteristics of dispersion of volcanic tephra emitted from the Mt. Baegdu with various eruption environment, numerical analysis were performed using numerical models, Weather Research and Forecast (WRF) and FLEXPART. Synoptic conditions at 12 October 2010 was adopted because the volcanic ash of Mt. Baegdu can reach the Korean peninsula and its dispersion pattern was compared with different Volcanic Explosivity Index (VEI) and particle size. Predominant size of falling out ash flowing in the peninsular is smaller than 0.5 mm and the ash large than the size is difficult to get in the peninsular due to the its weak ability of truculent diffusion. the difference of ash distribution with various VEI scenarios is not so much but number density of ash in the air is dramatically changed. Volcanic ash tends to be deposited easily in eastern coastal area such as Gangneung and Busan, because of the inflow of ash from East Sea and barrier effect of the Taeback mountains along the east coast of the Korean Peninsula. Accumulated amount of ash deposition can be increased in short period in several urban areas.

Risk Analyses from Eruption History and Eruptive Volumes of the Volcanic Rocks in Ulleung Island, East Sea (울릉도 화산암류의 분화이력과 분출량에 따른 위험도 분석)

  • Hwang, Sang Koo;Jo, In Hwa
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • We estimate the eruption history and magmatic eruptive volumes of each rock units to evaluate the volcanic eruption scale and volcanic hazard of the Ulleung Island. Especially, Maljandeung Tuff represents about 19~5.6 ka B.P. from $^{14}C$ dating, and Albong Trachyandesite, about 0.005 Ma from K-Ar dating in recent age dating data. These ages reveal evidences of volcanic activities within the last 10,000 years, indicating that the Ulleung Island can classify as an active volcano with possibility of volcanic eruption near future. Accumulated DRE-corrected eruptive volume is calculated at $40.80km^3$, within only the island. The calculated volumes of each units are $3.71km^3$ in Sataegam Tuff, and $0.10km^3$ in Maljandeung Tuff but $12.39km^3$ in accounting the distal and medial part extended into southwestern Japan. Volcanic explosivity indices range 1 to 6, estimating from the volumes of each pyroclastic deposits. The colossal explosivity indices are 5 in Sataegam Tuff, and 6 in Maljandeung Tuff in accounting the distal and medial part. Therefore, it is necessary for appropriate researches regarding possibility of volcanic eruption of the island, and establishment system of the evaluation and preparation for volcanic hazard based on the researches is required.

An Analysis on Influence Area by the Simulation over Mt. Baekdu Eruption (시뮬레이션에 의한 백두산 화산분출 영향범위 분석)

  • Kim, Nam-Sin
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.3
    • /
    • pp.348-356
    • /
    • 2011
  • Someday Mt. Baekdu could erupt by records of orogeny activity until today. This study is to predict influence area of lava flow and volcanic ash by simulation of volcanic eruption in the Mt. Baekdu. Simulation for eruption applied to supposing 7 grade of volcanic explosivity index, season from fall to spring. As a simulation results, lava flewed down into slope of China and volcanic ash diffused over the North Korea. Volcanic ash spreads to Ulneung area after nine hours. It was predicted that 61 cities and villages out of 27 administrative districts of Si-Gun were affected by volcanic ash in North Korea and an immense volume of volcanic ash was blown into farm lands, city areas and forests. This results expected to utilize information for disaster preparation of North Korea and joint research with South-North Korea and China.

  • PDF

Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menu-driven software (LAHARZ)to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.

Understanding Impact of the Volcanic Eruption of Nishinoshima, Japan on Air Quality in the South Korean Peninsula (일본 니시노시마 화산 분화에 의한 한반도 남부 대기질 영향 분석)

  • Cheolwoo Chang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.196-209
    • /
    • 2023
  • The Nishinoshima volcano, located 940 km south of Tokyo, experienced an eruption from June to August 2020. The volcanic gas and ash from the eruption of Nishinoshima that occurred at the end of July 2020 was reported to have the potential to affect the Korean Peninsula. In this study, we used Ash3D, a numerical simulation program for volcanic ash dispersion, to investigate the eruption that occurred at 0:00 local time on July 28, 2020, with a volcanic explosivity index of three. The results showed that the volcanic ash cloud reached Okinawa on the morning of July 30, carried by an east wind. It then moved northward and reached Jeju Island on August 1, eventually circulating in a clockwise direction and reaching southern part of the Korean Peninsula on August 2. The concentration of Particulate Matter 10 (PM10), measured at the Jeju Gosan Meteorological Observatory in Jeju Island, increase from August 1. A similar increase in PM10 concentration was observed at the Gudeok Mountain Weather Station in Busan from August 2. These findings suggested that eruption of the Nishinoshima volcano had an impact on the fine dust concentrations at Jeju Island and southern part of the Korean Peninsula.

Prediction of Dispersal Directions and Ranges of Volcanic Ashes from the Possible Eruption of Mt. Baekdu

  • Lee, Seung-Yeon;Suh, Gil-Yong;Park, Soo-Yeon;Kim, Yeon-Su;Nam, Jong-Hyun;Yu, Seung-Hyun;Park, Ji-Hoon;Kim, Sang-Jik;Kim, Yong-Sun;Park, Sun-Yong;Yun, Ja-Young;Jang, Yu-Jin;Min, Se-Won;Noh, So-Jung;Kim, Sung-Chul;Lee, Kyo-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • To predict the influence of volcano eruption on agriculture in South Korea we evaluated the dispersal ranges of the volcanic ashes toward the South Korea based on the possibilities of volcano eruption in Mt. Baekdu. The possibilities of volcano eruption in Mt. Baekdu have been still being intensified by the signals including magmatic unrest of the volcano and the frequency of volcanic earthquakes swarm, the horizontal displacement and vertical uplift around the Mt. Baekdu, the temperature rises of hot springs, high ratios of $N_2/O_2$ and $_3He/_4He$ in volcanic gases. The dispersal direction and ranges and the predicted amount of volcanic ash can be significantly influenced by Volcanic Explosivity Index (VEI) and the trend of seasonal wind. The prediction of volcanic ash dispersion by the model showed that the ash cloud extended to Ulleung Island and Japan within 9 hours and 24 hours by the northwestern monsoon wind in winter while the ash cloud extended to northern side by the south-east monsoon wind during June and September. However, the ash cloud may extent to Seoul and southwest coast within 9 hours and 15 hours by northern wind in winter, leading to severe ash deposits over the whole area of South Korea, although the thickness of the ash deposits generally decreases exponentially with increasing distance from a volcano. In case of VEI 7, the ash deposits of Daejeon and Gangneung are $1.31{\times}10^4g\;m^{-2}$ and $1.80{\times}10^5g\;m^{-2}$, respectively. In addition, ash particles may compact close together after they fall to the ground, resulting in increase of the bulk density that can alter the soil physical and chemical properties detrimental to agricultural practices and crop growth.