• Title/Summary/Keyword: volatile organic compounds exposure

Search Result 140, Processing Time 0.026 seconds

Mainstream smoke level of harmful substances in korean domestic cigarette brands

  • Choi, Hyun Doc;Song, Seok Ho;Cho, Hoonsik;Kim, Hyung Kyung;Lee, Jin-Hee;Yoon, Soon-Byung;Heo, Seok;Park, Hyoung-Joon
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.14-22
    • /
    • 2018
  • After signing the WHO FCTC in 2003, South Korea ratified the FCTC in 2005. This study was conducted to provide data on toxic constituents that can be used as useful information for the level of exposure to Korean smokers. Emissions data from five brands of cigarettes were tested under the ISO and "Canadian Intense (HCI)" smoking regimes, respectively. We conducted an analysis of 25 compounds containing nicotine, tar, carbonyls, phenolics, volatile organic compounds (VOCs), and semi-VOC cigarette smoke. Tar and nicotine showed levels of 4.3 to 5.8 mg/cig and 0.4 to 0.5 mg/cig, respectively, which are within the range of tolerance presented in ISO 8243. In the case of carbonyls, formaldehyde was detected within a range of 8.2 to $14.3{\mu}g/cig$, and acetaldehyde was present within a range of 224.7 to $327.2{\mu}g/cig$ under the ISO smoke regime. Crotonaldehyde was not detected under the ISO regime, and all of the carbonyls showed values 2.3 to 4.5 times higher under the HCI regime than those under the ISO regime. Catechol, which showed a level of 47.0 to $80.5{\mu}g/cig$ under the ISO regime and 117.5 to $184.7{\mu}g/cig$ under the HCI regime, was the highest constituent among the phenols. The amount of isoprene was 91.7 to $158.3{\mu}g/cig$ under the ISO regime and 221.0 to 377.0 under the HCI regime. To summarize, most of the constituents showed a tendency to be detected at levels 2 to 4 times higher under the HCI regime than under the ISO regime. Above all, these results represent the first analysis in Korea from an independent institute of tobacco companies under accreditation of ISO 17025.

Removal Efficiency of Ammonia and Toluene using Mobile Scrubber (이동형 스크러버를 이용한 암모니아 및 톨루엔의 제거 효율)

  • Kim, Jae-Young;Kim, Jang-Yoon;Lee, Yeon Hee;Kim, Min Sun;Kim, Min-Su;Kim, Hyun Ji;Ryu, Tae In;Jeong, Jae Hyeong;Hwang, Seung-Ryul;Kim, Kyun;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2018
  • BACKGROUND: The mobile vortex wet scrubber was developed to remove the harmful chemicals from accidental releases. However, there was a disadvantage that it was limitedly used for volatile organic compounds (VOCs) such as toluene according to the physicochemical properties. This study compared the removal efficiencies of an improved mobile scrubber on toluene and ammonia by applying diverse adsorption and absorption methods. METHODS AND RESULTS: The removal efficiencies on harmful chemicals were examined using various adsorption and absorption methods of water vortex process (C), phosphoric acid-impregnated activated carbon adsorption (PCA), pH-controlled water (pH 2.5) vortex process absorption with sulfuric acid (SWA) after ammonia exposure, granular activated carbon adsorption (GCA), and activated carbon mat adsorption (CMA) after toluene exposure. As a result, the best removal efficiency was shown in the SWA for ammonia and GCA for toluene. Also, the SWA and GCA methods were compared with different concentration levels. In the case of ammonia exposure (5, 10 and 25%), there was no difference by concentration levels, and the concentration in the outlet gradually increased, with pH change from acid to base. In the case of toluene exposure (50, 75 and 100%), the outlet concentration was higher relative to the exposure concentration in the initial 10 min, but the outlet concentration was remained steady after 10 min. CONCLUSION: The newly improved mobile scrubber was also effective in removing VOCs through adsorption techniques (activated carbon, activated carbon fiber, carbon mat filter etc.), as well as removing acid-base harmful chemicals by neutralization reaction.

Concentration of volatile organic compounds(VOCs) in ambient air and level of residents in industrial area (산단지역 공기 중 휘발성유기화합물농도와 지역주민의 노출 수준)

  • Woo, Kyungsook;Park, Heejin;Kang, Tackshin;Kim, Geunbae;Jeon, Junmin;Jang, Bongki;Lee, Jongwha;Son, Busoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.104-114
    • /
    • 2015
  • Objectives: The purpose of this study is to investigate the atmospheric concentration of VOCs and the urinary concentration of t,t-MA, HA, MA in the industrial complex of Yeosu, South Jeolla Province. Methods: In order to study seasonal patterns of air concentration of VOCs, measurements were taken at five sampling sites around Yeosu from June 2013 to June 2014. Urinary metabolite excretionsfrom 671 subjects, exposure and comparison area were analyzed. Results: The average concentration of VOCs in the air was 1.53ppb for benzene, 0.73ppb for toluene, 0.22ppb for ethylbenzene, 0.52ppb for xylene and 0.12ppb for styrene. The concentration of benzene was somewhat higher than the year-average standard ($5{\mu}g/m^3$, about 1.5ppb) of the domestic air-environment criteria newly established in 2010.The metabolic concentration of VOCs in the urine of the entire sample was analyzed at $47.76{\mu}g/g\;cr.$, 213.07mg/g cr., and $290.09{\mu}g/g\;cr.$ for t,t-MA, HA, and MA, respectively. Compared with the average values for Korea as presented in the first basic survey of national environmental conservation ( $49.8{\mu}g/g\;cr.$ for t,t-MA, 0.17g/g cr. for HA, and 0.26mg/g cr. for MA), the metabolic concentrations of HA and MA in urine were higher than the average values. Conclusions: The concentration of VOCs in the air and urinary metabolites of the exposed and control areas showed that the concentrations of all substances were higher in the exposed area than in the control area.

Assessment of VOCs Emission Characteristics from Building Materials such as Wall Paper, Paints, and Adhesives Using Small Chamber Method (소형챔버법을 이용한 건축자재 중 벽지, 페인트 및 접착제의 VOCs 방출특성 평가)

  • Lee Suk-Jo;Jang Seong-Ki;Cho Yong-Sung;Jung Kyung- Mi;Jeong Gi-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.191-204
    • /
    • 2005
  • Building and furnishing materials and consumer product are important sources of volatile organic compounds(VOCs) and other aldehydes in the indoor environment. Some available evidence indicates that VOCs can cause adverse health effects to the building occupants and contribute to some of the symptoms of what we call, 'Sick House Syndrome' in Korea. The aims of this study were to evaluate the efficiency of emission system and to investigate comparison of the emission characteristics of different building materials such as wall-papers, paints, and adhesives. The emission of VOCs from building materials were determined in the small chambers defining the temperature, relative humidity, and ventilation rate in this study. VOCs were sampled for 20 minutes using Tenax-TA tubes and analysed by GC-MS with thermal desorption. The stability of conditions for temperature and relative humidity in this small chamber system showed that the fluctuation of temperature was between 25.4$\pm$0.3$^{\circ}C$ and that of relative humidity was 50.2$\pm$0.6$\%$ under the airflow rate of 167 mL/min. The emission tests from building materials resulted in TVOC emission rates of 0.011 $\~$ 3.108 mg/m$^{2}$h after 7 days. The general wall-papers emitted toluene abundantly and the natural wall-papers mainly emitted n-butanol and a minor amount of alkanes compound such as n -tetradecane. The remainder consisted of toluene, m,p -xylene, and styrene. The paints mainly emitted toluene and the adhesives mainly emitted chloroform as well as toluene. As a result, this study is expected to suggest meaningful data for future studies in exposure control through selecting healthy building materials and for the establishment of guidelines for various building materials in Korea.

Risk Assessment of Volatile Organic Compounds (VOCs) and Formaldehyde in Korean Public Facilities: Derivation of Health Protection Criteria Levels

  • Kim, Ho-Hyun;Lim, Young-Wook;Shin, Dong-Chun;Sohn, Jong-Ryeul;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.121-133
    • /
    • 2011
  • This study suggests criteria to conduct a risk assessment of VOCs and formaldehyde in uncontrolled public facilities. Pollutants and facilities were selected based on two years of monitoring data and exposure scenarios in 573 uncontrolled public facilities, composed of 10 types of public institutions. With the exception of social welfare facilities, lifetime ECRs of formaldehyde and benzene in each facility were higher in employees than in users, except in social welfare facilities. In social welfare facilities, the risk of benzene for users ($1{\times}10^{-5}$) was higher than that of workers ($1{\times}10^{-6}$) because facility users live in the facility 24 hours per day, compared to workers who spend an average of 8 hours per day in the facility. The risk of benzene to workers in restaurants, academies, performance halls, internet cafe and pubs were estimated as high as $1{\times}10^{-4}$ and the risk to workers in the theaters and karaoke bars were recorded as $1{\times}10^{-5}$. Because lifetime ECRs of carcinogens exceeded $1{\times}10^{-4}$ for workers and users in most facilities, risk management of formaldehyde and benzene in these facilities is necessary. Although HQs of toluene and xylenes did not exceed 1.0, their HQs did exceed 0.1 in some facilities, so they were evaluated as potentially harmful materials. Additionally, criteria for health protection in IAQ by facility are suggested at $60-100\;{\mu}g/m^3$ for formaldehyde, $400-500\;{\mu}g/m^3$ for TVOCs, $10-20\;{\mu}g/m^3$ for benzene, $150-170\;{\mu}g/m^3$ for toluene and $100\;{\mu}g/m^3$ for xylenes, based on the survey on IAQ and HRA methodology. The excess rates of IAQ to health protection criteria in all facilities were 16% for formaldehyde, 8% for TVOCs and benzene, 9% for toulene, and 5% for xylenes.

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.

Laboratory Evaluation of the Accuracy, Precision, and Inter-instrumental Variance of a Portable Photoionization Detector (휴대용 광이온화 검출기의 정확도, 정밀도 및 기기간 차이에 대한 실험실 평가)

  • Choi, Dongmin;Choi, Youngeun;Yoon, Chungsik;Rhie, Kwangwon;Lee, Yunkeun;Lee, Ikmo;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.200-208
    • /
    • 2012
  • Objectives: This study investigated the performance of three separate units of a portable photoionization detector (PID, ppb-RAE 3000) for measuring volatile organic compounds (VOCs) in a laboratory. Methods: A laboratory evaluation of the accuracy, precision, and inter-instrumental variance of three separate units of a portable PID (ppb-RAE 3000) was performed. The evaluation was based on the preparation of a test air sample of known toluene or ethylacetate concentration in a Tedlar$^{(R)}$ bag. The test air sample was monitored and data were logged consecutively by the three PIDs. A certified gas of 50 ppm toluene was also monitored during the test to ensure the reliability of the generated test air sample. Four different concentrations ranging from 0.1 to 2 TLV were used and a series of five measurements for each concentration level was performed. The accuracy was evaluated using National Institute for Occupational Safety and Health (NIOSH) criteria. Results: The results from the oldest ppb-RAE3000 unit among the three test units generally fell outside the NIOSH recommended accuracy criteria of ${\pm}25%$, whereas the other two units produced results which were acceptable at, or greater than, 25 ppm of toluene, or 0.5 TLV. These units also met the NIOSH criteria for some ethylacetate measurements but the results were not consistent. Conclusions: Considering the inconsistent performance of these ppb-RAE 3000 units, this device may not be appropriate for use as an alternative to the standard measurement methods. However, it can serve good survey instruments to identify exposure sources or concentration profiles. For all applications, the ppb-RAE 3000 should be used with frequent calibration checks, additional validation using a reference material, and careful maintenance.

The Distribution of Indoor Air Pollutants by the Categories of Public-Use Facilities and Their Rate of Guideline Violation (다중이용시설별 실내공기 오염물질 농도분포 및 기준치 이상 값의 구성비 조사)

  • Joen, Jeong-In;Lee, Hye-Won;Choi, Hyun-Jin;Jeon, Hyung-Jin;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.398-409
    • /
    • 2021
  • Background: The types and effects of hazardous pollutants in indoor air may vary depending on the characteristics of the sources and pollutants caused by physical and chemical properties of buildings, the influence of outdoor air, and the exposure and use characteristics of residents. Objectives: This study was conducted to provide basic data on the establish of indoor air quality management for different classes of public-use facilities by presenting the characteristics of concentration distribution of hazardous pollutants by different public-use facilities and the status of the excess proportion of exceeding standards. Methods: This study analyzed self-measurement data from public-use facilities taken from 2017 to 2019 A total of 133,525 facilities were surveyed. A total of 10 types of pollutants that have maintenance and recommended standards stipulated in the Indoor Air Quality Control Act from the Ministry of Environment were investigated. The excess proportion and the substances exceeding the criteria for each type of public-use facilities for these pollutants were investigated. Results: As a result of the analysis of the proportion of exceeding the standard for each type of public-use facility, the facilities with the highest excess proportion of the standards for each hazardous pollutant were: PM10 in railway stations (8.93%), PM2.5 in daycare centers (7.36%), CO2 in bus terminals (2.37%), HCHO in postpartum care centers (4.11%), total airborne bacteria in daycare centers (0.69%), CO in museums (0.1%), NO2 in postpartum care centers (1.15%), Rn in museums (0.78%), total volatile organic compounds in postpartum care centers (7.20%) and mold in daycare centers (1.44%). Conclusions: Although uncertainty may arise because this study is a result of self-measurement, it is considered that this study has significance for providing basic data on the establishment in the future of indoor air quality management measures customized for each type of public-use facility.

Firefighters' Exposures to Polynuclear Aromatic Hydrocarbons and Volatile Organic Compounds by Tasks in Some Fire Scenes in Korea (일부 화재현장에서 소방공무원의 직무별 다핵방향족탄화수소 및 휘발성유기화합물 노출평가)

  • Jin, Suhyun;Byun, Hyaejeong;Kang, Taesun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.477-487
    • /
    • 2019
  • Objectives: Firefighters are known to be exposed to a variety of toxic substances, but little information is available on the exposure profile of firefighting activities. The aims of this study were to conduct exposure monitoring of toxic chemicals at fire scenes, to compare the concentrations of respective chemicals among firefighting tasks, and to assess the main factors influencing the concentrations of chemicals. Methods: Researchers performed sampling at firefighting scenes during four weeks in 2013. At the scene, we collected samples based on firefighters' own activities and examined the situation and scale of the accident. Collected samples were classified into three categories, including fire extinguishing and overhaul, and were analyzed in the laboratory according to respective analysis methods. Results: A total of fourteen fire activity events were surveyed: five fire extinguishing, six overhaul, and three fire investigations. Although no substance exceeded the ACGIH TLV, PAHs were detected in every sample. Naphthalene ranged from 0.24 to 279.13 mg/㎥ (median 49.6 mg/㎥) and benzo(a)pyrene was detected in one overhaul case at 10.85 ㎍/㎥. Benzene (0.01-12.2 ppm) was detected in every task and exceeded the ACGIH TLV. No significant difference in concentrations between tasks was shown. Conclusions: These results indicate that all firefighting tasks generated various hazardous combustion products, including possible carcinogens.

The Effects of Wearing Protective Devices among Residents and Volunteers Participating in the Cleanup of the Hebei Spirit Oil Spill (허베이스피릿호 유류유출사고 방제작업 참여자의 보호장비착용 효과)

  • Lee, Seung-Min;Ha, Mi-Na;Kim, Eun-Jung;Jeong, Woo-Chul;Hur, Jong-Il;Park, Seok-Gun;Kwon, Ho-Jang;Hong, Yun-Chul;Ha, Eun-Hee;Lee, Jong-Seung;Chung, Bong-Chul;Lee, Jeong-Ae;Im, Ho-Sub;Choi, Ye-Yong;Cho, Yong-Min;Cheong, Hae-Kwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Objectives : To assess the protective effects of wearing protective devices among the residents and volunteers who participated in the cleanup of the Hebei Spirit oil spill. Methods : A total of 288 residents and 724 volunteers were surveyed about symptoms, whether they were wearing protective devices and potential confounding variables. The questionnaires were administered from the second to the sixth week following the accident. Spot urine samples were collected and analyzed for metabolites of 4 volatile organic compounds(VOCs), 2 polycyclic aromatic hydrocarbons(PAHs), and 6 heavy metals. The association between the wearing of protective devices and various symptoms was assessed using a multiple logistic regression adjusted for confounding variables. A multiple generalized linear regression model adjusted for the covariates was used to test for a difference in least-square mean concentration of urinary biomarkers between residents who wore protective devices and those who did not. Results : Thirty nine to 98% of the residents and 62-98% of volunteers wore protective devices. Levels of fatigue and fever were higher among residents not wearing masks than among those who did wear masks(odds ratio 4.5; 95% confidence interval 1.23-19.86). Urinary mercury levels were found to be significantly higher among residents not wearing work clothes or boots(p<0.05). Conclusions : Because the survey was not performed during the initial high-exposure period, no significant difference was found in metabolite levels between people who wore protective devices and those who did not, except for mercury, whose biological half-life is more than 6 weeks.