• Title/Summary/Keyword: volatile compound

Search Result 571, Processing Time 0.036 seconds

Identification of the Major Volatile Components from Different Plant Organs of Foeniculum vulgare Mill.

  • Chung, Hae-Gon;Bang, Jin-Ki;Kim, Geum-Soog;Seong, Nak-Sul;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.274-278
    • /
    • 2003
  • The various plant organs of fennel (Foeniculum vulgare Mill.) were investigated to identify their volatile components using Dynamic Headspace (purge & trap). They showed slight differences concerning the volatile components both qualitatively and quantitatively. Results revealed that trans-anethole (12.65%) was the major compound in the leaf. The highest compound was ${\alpha}-pinene$ (28.78%), and trans-anethole (7.90%) was highly detected in the stem. The maximum values were 5.64, 4.59, 1.58, 1.51, and 1.04% for ${\alpha}-pinene,\;{\gamma}-terpinene,\;{\beta}-pinene$, 1,8-cineol and fenchone, respectively in the flower. However, very little trans-anethole was detected (0.27%) in the flower. From these results, it was suggested that the major components were different depending on the plant organs. However it was demonstrated that the related plant organs like flower-fruit and leaf-stem contained the similar components.

Changes in the Volatile Compounds of Artemisia princeps var. orientalis Essential Oils During Storage

  • Chung, Mi-Sook
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.481-487
    • /
    • 2009
  • The compositional changes of wormwood (Artemisia princeps var. orientalis) essential oils were studied under 4 different storage conditions i.e., being exposed to air at 20 and $40^{\circ}C$. Sixty-four volatile compounds consisting of 24 terpene hydrocarbons, 18 alcohols, 11 ketones, 6 esters, 1 aldehyde, 2 hydrocarbons, and 2 oxides were identified on the basis of their mass spectra characteristics and retention indices in original wormwood essential oils. Identified compounds constituted 80.53% of the total peak area. Borneol (12.13%) was the most abundant compound, followed by $\alpha$-thujone (8.66%), T-cadinol (6.67%), and 1,8-cineole (6.21%) in original wormwood essential oils. Under the condition of $40^{\circ}C$ of temperature with the cap being opened for 3 min everyday respectively during 6 months of storage, the total amount of functional groups in essential oil determined by peak area percent were decreased by 79.45%, at most. The total level of monoterpene hydrocarbons decreased markedly in the aerobic condition and high temperatures. Whereas the total level of esters increased significantly. Wormwood essential oils were stored in experimental conditions, with the changes in the volatile compounds of essential oils being accelerated by high temperatures and contact with the atmosphere.

The Packaging and Irradiation Effects on Volatile Compounds of Red Pepper Powder

  • Lee, Jeung-Hee;Kim, Mee-Ree
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.139.2-139
    • /
    • 2003
  • The packaging and irradiation effects on the volatile compounds of red pepper powder were investigated. The red pepper powder (Capsicum annuum) was prepackaged in vacuum (PE/Nylon film bag), and irradiated with the dose of 0, 3, 5 or 7 kGy at 0$^{\circ}C$. The odor of irradiated red pepper powder was classified into 4 groups (0, 3, 5, and 7 kGy) by electronic nose using metal oxide sensors, and the volatile compounds developed by irradiation were analyzed by GC-MS along with solid phase microextraction. Hexanoic acid and tetramethyl pyrazine, which were found in red pepper powder of 0 kGy, disappeared in irradiated red pepper powder. Further, 1,3-bis(1,1-dimethylethyl)-benzene was detected by GC-MS as a new developed volatile compound in irradiated red pepper, and this compound was identified to be originated from packaging material not from red pepper powder. This study showed that off-odor from packaging materials was responsible for the volatiles produced from dried food treated with irradiation.

  • PDF

Volatile Flavor Compounds of Saussurea lappa C.B. Clarke Root Oil by Hydro Distillation-GC and $GC/MS^+$

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Quality and Culture
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 2007
  • The volatile flavor compounds of Saussurea lappa C.B. Clarke, a perennial, aromatic and medicinal herbaceous plant of the Asteraceae family, were isolated by the hydro distillation extraction method using a Clevenger-type apparatus, and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The plant yielded a light yellow colored oil (0.02%, v/w). From S. lappa C.B. Clarke root oil, sixty-three volatile flavor compounds were tentatively identified, among which sesquiterpene was predominant (21.70%). The identified compounds of the root oil constituted 87.47% of the total peak area. From the constituents making up more than 5% of the volatile flavor components, a long-chain aldehyde, (7Z, 10Z, 13Z)-7, 10, 13-hexadecatrienal, was the most abundant volatile flavor compound (21.20%), followed by dehydrocostuslactone (10.30%) belonging to sesquiterpene lactone, valerenol (5.30%) and vulgarol B (5.06%).

  • PDF

Relevance between Total Volatile Organic Compound (TVOC) Exposure Level and Environmental Diseases Within Residential Environments (주거환경 내의 Total Volatile Organic Compounds (TVOC) 노출수준과 환경성질환과의 관련성)

  • Lee, Dong-Hyun;Chung, Jin-Do
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.193-200
    • /
    • 2011
  • Objective: The purpose of this study is to compare and analyze the level of exposure to volatile organic compounds for different kinds of households in apartments or houses and analyze the relation between atopy-related symptoms and concentration of volatile organic compounds in order to improve indoor air quality and start to build a process to prevent environmental diseases. Method: From July 2010 to November 2010, TVOC concentration levels were measured and analyzed in 402 general households and 236 weak households, totalling 638 households. Residents were asked to fill out a survey on environmental disease. All resources were analyzed using SPSS 12.0 program. Result: In comparing the differences in concentration levels of volatile organic compounds for different types of households, including existing apartments and houses, the type of housing did not affect the concentration level of volatile organic compounds, but the relevance with skin trouble, diagnosed atopy, and atopy systems all had statistical similarities. Moreover, above-limit volatile organic compounds showed statistical relevance with amount of ventilation, time of construction, skin trouble, diagnosed atopy and atopy symptoms. Conclusion: The study concludes that as the time of construction recedes further into the past and as the amount of ventilation is higher, the exposure level to volatile organic compounds was lower and the group that were suffering from atopy symptoms had higher exposure to volatile organic compounds.

Studies on the Extraction Method and Polysaccharide of Tricholoma matsutake using the Supersonic wave and Microwave (초음파와 극초단파를 이용한 송이버섯의 추출법과 다당체에 관한 연구)

  • Yu, Seung-Hyun;Chong, Myong-Soo;Kim, Hae-Ja;Lee, Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1431-1436
    • /
    • 2007
  • In order to optimize the extract condition and improve physiological activity of the extract form Tricholoma matsutake, experiments related to extraction methods, totale yield, content of total soluble polysaccharide, SOD-like activity, total polyphenol amount, and volatile flavor compound and the others were carried out, results were obtained as following: Compare with traditional hydrothermal extraction method (Hot water extraction : HWEW), it illustrates that the low temperature extraction method which combines a supersonic waves and microwave (Supersonic microwave extraction : SMEW) causes of increasing the total yield, total soluble polysaccharide. As to the anti-oxident effect, SMEW method leds to increasing of the SOD-like activity, total polyphenol amount as well. Also, cytotoxic effect and growth inhibitory effect against cancer cell line are much higher in SMEW method than HWEW method, especially SMEW5 extracts treated by supersonic 15 min. and microwave 120W, 3 min. and 2 times. The main volatile flavor compound and infinitesimal volatile flavor compound both increase significantly by SMEW method. It is concluded the main components of the volatile flavor compounds extracted from Tricholoma matsutake are 1-octen-3-0l, Methyl cinnamate, 2-octeno1 et al. alcohol typies. Consequently, SMEW5 method is considered as the most effective one for anti-oxidant and is prior to any other methods. And the optimun conditions of this method are : supersonic waves (supersonic, 25KHz, 50W) 15 minutes, microwave spectroscopy (microwave, 2,450MHz, 120W) 3 minutes, and every treatment is performed once followed twice repeats.

Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour (편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가)

  • Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.126-132
    • /
    • 2022
  • Wood Plastic Composite(WPC) has been mostly used for outdoor purposes such as deck materials and trails so far. In this study, WPC panels with improved antibacterial properties, total volatile organic compound emissions (TVOC), and flame retardant were manufactured to use Wood Plastic Compound as interior materials for indoor use. WPC compound was prepared by mixing Chamaecyparis obtusa wood flour with high density polyethylene(HDPE). The prepared WPC compound exhibited excellent antibacterial and antifungal properties, and the total volatile organic compound emission(TVOC) was 0.062 mg/m2·h. The WPC panel(303mm×606mm×10mm) manufactured by a twin screw extruder with the manufactured compound achieved the flame retardant grade 2 standard of KS F 2271.

Volatile Flavor Constituents of Cooked Oyster Sauce Prepared from Individually Quick-frozen Oyster Crassostrea gigas Extract (IQF 굴(Crassostrea gigas) 복합엑스분을 이용한 굴 소스의 가열향기 성분)

  • Hwang, Young-Suk;Kim, Sang-Hyun;Shin, Tai-Sun;Cho, Jun-Hyun;Lee, In-Seok;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.668-673
    • /
    • 2015
  • The pacific oyster Crassostrea gigas has a desirable taste and flavor that differs from those of other fish and shellfish. In order to develop a high value-added product from individually quick-frozen oyster extract (IQFOE), we prepared an oyster sauce from IQFOE and characterized its volatile compounds using vacuum simultaneous steam distillationsolvent extraction / gas chromatography / mass spectrometry. The moisture, crude protein, crude ash, salinity, pH and volatile basic nitrogen contents of the oyster sauce were 60.6%, 8.2%, 9.2%, 9.3%, 5.7 and 21.0 mg/100 g, respectively. Seventy-six volatile compounds were detected in the cooked odor of the oyster sauce. These volatile compounds included 14 esters, including ethyl acetate, 13 nitrogen- containing compounds, including 2,4,6-trimethyl pyridine, 13 acids, including hexadecanoic acid, 12 alcohols, including ethyl alcohol and 6-methyl heptanol, 6 alkanes, 5 aldehydes, including benzaldehyde, 5 ketones, including 1-(2-furanyl)-ethanone, 4 furans, including 2-furancarboxaldehyde and 2-furanmethanol, 3 aromatic compounds, including d-limonene, and 1 miscellaneous compound. Esters, acids and nitrogen-containing compounds, and alcohols were the most abundant compounds in the odor of the cooked oyster sauce, with some aldehydes, ketones, and furans.

The Effect of Roasting Temperature on the Formation of Volatile Compounds in Chinese-Style Pork Jerky

  • Chen, W.S.;Liu, D.C.;Chen, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.427-431
    • /
    • 2002
  • The purpose of this work was to study the effect of roasting temperature on the production of volatile compounds in Chinese-style pork jerky. The pork jerky was roasted by far-infrared grill at $150^{\circ}C$ or $200^{\circ}C$ for 5 min. The analysis of volatile compounds using a Likens-Nickerson apparatus coupled to a gas chromatograph and a mass spectrometer enabled us to identify 21 volatile compounds. The results showed that the volatile compounds coming from pork jerky can be divided into two groups in accordance with their possible origins. The first group of volatile compounds derived from oxidation of lipid included hexanal, ethylbenzene, nonanal, benzaldehyde, 2,4-decadienal, 1-octen-3-ol, octadecanal, and 9-octadecenal. The second group of volatile compounds generated from degradation of natural spices included 1,8-cinene, 4-terpineol, ${\alpha}$-terpineol, e-anethole, methyl-eugenol, panisaldehyde, elemol, eugenol, methyl-isoeugenol and myristicin. Significant differences (p<0.05) were found between 2 different roasted temperatures at levels for all volatile compounds.

Antimicrobial Activities in the Water Extract of Mustard Seed Fractionated by Solvents (용매의 분획에 따른 겨자 물추출물의 항균성)

  • Seo, Gwon-Il;Kim, Hong-Chul;Sim, Gi-Hwan
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.295-300
    • /
    • 1997
  • The water extract of mustard seed was fractionated by solvents with an increase of polarity, and antimicrobial activities of each extracts were examined, and volatile compounds of each extract were identified by GC-MS. When the water extract was fractionated with solvents, the antimicrobial activities were high in the order of chloroform, ethylacetate, hexane, butanol and aqueous layer. In chloroform fraction, 16 volatile compounds, including 2 isothiocyanates such as 3-isothiocyanato- 1-propene and 4-isothiocyanato- 1-butane, 1 nitrile and 4 acids were identified, their contents were higher than other fractions. Twelve, 10, 4 and 7 volatile compounds were identified in ethylaceate, hexane, butanol and water fractions, respectively. The volatile compounds were considerably less in the fractions of butanol and water than others.

  • PDF