• Title/Summary/Keyword: volatile alcohols

Search Result 315, Processing Time 0.024 seconds

Volatile Components of Traditional Gochujang Produced from Small Farms according to Each Cultivation Region (지역별 소규모 농가 생산 전통 고추장의 휘발성 성분에 관한 연구)

  • Hong, Yeo Joo;Son, Seong Hye;Kim, Ha Youn;Hwang, In Guk;Yoo, Seung Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.451-460
    • /
    • 2013
  • The purpose of this study is to investigate the volatile compounds of Korean traditional gochujang from various districts. The volatiles from each traditional gochujang are being extracted by simultaneous steam distillation extraction (SDE), and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Twenty compounds are identified as major volatile components which include 8 esters, 4 alcohols and 4 acids. The most traditional gochujang possesses more volatile components rather than commercial gochujang products. Most acids come from fatty acids and the alcohols derive from the oxidative degradation of linolenic acid. The most abundant volatile compounds for both traditional and commercial gochujang include 10 compounds such as 2-methyl-1-propanol, hexanal, 2-methyl-1-butanol, octanoic acid ethyl ester, as well as the various type of acids and esters. They represent most of the total GC peak areas, respectively. From the results, the characteristics of the flavors for traditional gochujang from each district are not clear but have shown various components than the commercial products.

Volatile Component Analysis of Commercial Japanese Distilled Liquors (Shochu) by Headspace Solid-Phase Microextraction (헤드스페이스 고체상미량추출(Solid-Phase Microextraction)을 이용한 시판 일본소주의 휘발성 향기성분 분석)

  • Shin, Kwang-Jin;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.567-573
    • /
    • 2015
  • In this study, volatile compounds in nine commercial Japanese distilled liquors (Shochu) were isolated by headspace solid-phase microexrraction (SPME) and analyzed by gas chromatography (GC) and GC-mass spectrometry (MS). A total of 76 volatile components, including 48 esters, 13 alcohols, and 15 miscellaneous components, were identified. Esters and alcohols constituted the largest groups of quantified volatiles. Differences in volatile components among the distilled liquors and possible sample grouping were examined by applying principal component analyses to the GC-MS data sets. The first and second principal components explained 77.92% of the total variation across the samples. The samples using barley koji showed higher overall concentrations of total volatile components. Additionally, the principal component analysis did not reveal any sample grouping based on the raw material used.

Volatile Flavor Constituents of Cooked Oyster Sauce Prepared from Individually Quick-frozen Oyster Crassostrea gigas Extract (IQF 굴(Crassostrea gigas) 복합엑스분을 이용한 굴 소스의 가열향기 성분)

  • Hwang, Young-Suk;Kim, Sang-Hyun;Shin, Tai-Sun;Cho, Jun-Hyun;Lee, In-Seok;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.668-673
    • /
    • 2015
  • The pacific oyster Crassostrea gigas has a desirable taste and flavor that differs from those of other fish and shellfish. In order to develop a high value-added product from individually quick-frozen oyster extract (IQFOE), we prepared an oyster sauce from IQFOE and characterized its volatile compounds using vacuum simultaneous steam distillationsolvent extraction / gas chromatography / mass spectrometry. The moisture, crude protein, crude ash, salinity, pH and volatile basic nitrogen contents of the oyster sauce were 60.6%, 8.2%, 9.2%, 9.3%, 5.7 and 21.0 mg/100 g, respectively. Seventy-six volatile compounds were detected in the cooked odor of the oyster sauce. These volatile compounds included 14 esters, including ethyl acetate, 13 nitrogen- containing compounds, including 2,4,6-trimethyl pyridine, 13 acids, including hexadecanoic acid, 12 alcohols, including ethyl alcohol and 6-methyl heptanol, 6 alkanes, 5 aldehydes, including benzaldehyde, 5 ketones, including 1-(2-furanyl)-ethanone, 4 furans, including 2-furancarboxaldehyde and 2-furanmethanol, 3 aromatic compounds, including d-limonene, and 1 miscellaneous compound. Esters, acids and nitrogen-containing compounds, and alcohols were the most abundant compounds in the odor of the cooked oyster sauce, with some aldehydes, ketones, and furans.

Analysis of Volatile Flavor Components of Pleurospermum kamtschaticum (누룩치의 휘발성 향미성분 분석)

  • 정미숙;이미순
    • Korean journal of food and cookery science
    • /
    • v.14 no.5
    • /
    • pp.541-546
    • /
    • 1998
  • Volatile flavor components in leaf and petiole of fresh Pleurospermum kamtschaticum H$\_$OFFM/ were extracted by SDE (simultaneous steam distillation and extraction) method using diethyl ether as solvent. Essential oils were analyzed by gas chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS). Identification of volatile flavor components was based on the Rl of GC and mass spectrum of GC-MS. A total of 31 components, including 15 hydrocarbons, 4 aldehydes, 1 ketone, 5 alcohols, 2 esters, 3 acids and 1 oxide were identified in the essential oils. (Z)-${\beta}$-Farnesene, (Z, E)-${\alpha}$-farnesene and farnesene were the major volatile flavor components in fresh Pleurospermum kamtschaticum. Volatile flavor patterns of Pleurospermum kamtschaticum were analyzed using electronic nose. Sensor T30/1 and PA2 that were sensitive to alcohols had the highest resistance for fresh Pleurospermum kamtschaticum. Resistance of six metal oxide sensors was decreased in dried sample compared with fresh one.

  • PDF

Changes in Volatile Flavor Compounds in Red Snow Crab Chionoecetes japonicus Cooker Effluent during Concentration (붉은 대게 가공부산물 농축중의 휘발성 향기성분 변화)

  • Ahn, Jun-Suck;Cho, Woo-Jin;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.437-440
    • /
    • 2006
  • To develop natural crab-like flavorants from red snow crab Chionoecetes japonicus cooker effluent (RSCCE), the flavor was analyzed during the concentration of RSCCE up to $40^{\circ}Brix$. Using solid phase microextraction (SPME)/gas chromatography (GC)/mass selective detection (MSD), 30 volatile flavor compounds were detected in four RSCCE samples (10, 20, 30, and $40^{\circ}Brix$). These comprised 12 aromatic compounds, 5 N-containing compounds, 2 5-containing compounds, 2 alcohols, 2 aldehydes, and 7 miscellaneous compounds. The amounts of all volatiles except alcohols and aldehydes increased significantly with the concentration (p<0.05). Of the volatiles detected, the most abundant was a dimethyl trisulfide with an odor like onion/cooked cabbage. Of the N-containing compounds (nutty, roasted peanut-like odor), 2-ethyl-5-methylpyrazine was the most abundant, followed by 2,5-dimethylpyrazine and 2-methyl-5-isopropylpyrazine in that order (p<0.05). The N- and S-containing compounds with characteristic odors detected in this experiment are thought to play a positive role in RSCCE during concentration.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.

Volatile Flavor Components of Youngia denticulata and Amaranthus lividus (이고들빼기와 개비름의 휘발성 풍미성분)

  • Lee, Mie-Soon;Kim, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.511-514
    • /
    • 1989
  • Volatile components of Youngia denticulata and Amaranthus lividus, Korean wild vegetables, were collected by Steam Distillation-Extraction (SDE) method Essential oils were analyzed by gas chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS). Thirty one components, Including 10 alcohols, 2 esters, 6 aldehydes, 5 ketones, 3 hydrocarbons, 2 acids and 3 miscellaneous ones were confirmed in Youngia denticulata. Fifty eight components, including 12 alcohols, 4 esters, 5 aldehydes, 9 ketones, 3 acids, 2 phenols and 6 miscellaneous ones were confirmed in Amaranthus lividus.

  • PDF

Headspace-Solid Phase Microextraction (HS-SPME) Analysis of Korean Fermented Soybean Pastes

  • Lee, Seung-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.700-705
    • /
    • 2009
  • In this study, the volatile compounds in 9 commercial fermented soybean pastes were extracted and analyzed by headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), respectively. A total of 63 volatile components, including 21 esters, 7 alcohols, 7 acids, 8 pyrazines, 5 volatile phenols, 3 ketones, 6 aldehydes, and 6 miscellaneous compounds, were identified. Esters, acids, and pyrazines were the largest groups among the quantified volatiles. About 50% of the total quantified volatile material was contributed by 5 compounds in 9 soybean paste samples; ethyl hexadecanoate, acetic acid, butanoic acid, 2/3-methyl butanoic acid, and tetramethyl-pyrazine. Three samples (CJW, SIN, and HAE) made by Aspergillus oryzae inoculation showed similar volatile patterns as shown in principal component analyses to GC-MS data sets, which showed higher levels in ethyl esters and 2-methoxy-4-vinylphenol. Traditional fermented soybean pastes showed overall higher levels in pyrazines and acids contents.

Processing Conditions of Low Salt Fermented Squid and its Flavor Components 1. Volatile Flavor Components of Low Salt Fermented Squid (저염 오징어젓갈 제조 방법 및 향미성분 1. 저염 오징어젓갈의 휘발성 향기성분)

  • 최성희;임성임;허성호;김영만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.261-267
    • /
    • 1995
  • Low-salted and fermented squid product, squid jeotkal was prepared with the addition of 10% salt and fermented for 50 day at 1$0^{\circ}C$. During fementation of squid, sensory evaluation and changes of volatile components were examined. Volatile flavor components in raw squid and low-salted squid jeotkal were extracted using a rotary evaporating system. The volatile concentrates were identified by GC and GC-MS. Major volatile components of raw squid were methional and 2-methyl-2-propanol. However, alcohols such as propanol, isoamyl alcohol, methionol and phenylethyl alcohol increased during the period of fermentation. The model reaction using microorganism was carried out, in order to confirm formation mechanism ofvolatile flavor compounds of the squid during fermentation. The main volatile components of Pseudomonas sp. D2 model system were isoamyl alcohol and acetoin. Those of Staphylococcus xylosus model system were isoamyl alcohol and phenylacetaldehyde.

  • PDF

Volatile Flavor Compounds in Low Salt-Fermented Ascidians Halocynthia roretzi Made by Flavor Enhancing (향미 개선 저식염 우렁쉥이(Halocynthia roretzi) 젓갈의 휘발성 향기성분)

  • Cha, Yong-Jun;Jeong, Eun-Jeong;Yu, Daeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.273-280
    • /
    • 2020
  • Volatile compounds in fermented ascidians Halocynthia roretzi were analyzed to identify key flavor compounds using SPME/GC/MSD (solid phase microextraction/gas chromatography/mass selective detector) after 60 days of fermentation at 5℃. The control was chopped ascidians subject to anti-browning and 4% salt treatment. product A was made from product C by adding an alcohol extract of red peppers and onion peel, 0.1% of glucose, and 0.55% of mixed amino acids (MAA; 0.05% Glu, 0.1% Pro, 0.3% Ala, and 0.1% Gly). After blanching and anti-browning treatment of chopped ascidians, Product B1 was made by adding 3% anchovy sauce and 6% sorbitol. Product B2 was made by adding 0.1% glucose and 0.55% MAA to Product B1. In total, 78 compounds were identified, including 31 alcohols, 15 aldehydes, and 10 ketones. The alcohols included 12 compounds from the C8-C10 series with floral and fruit odors, including octanol, 3-methyloctanol, 2,6-dimethyl-1-heptanol, (E)-5-octen-1-ol, 6-methyloctanol, (E)-3-octen-1-ol, (E)-3-decen-1-ol, (Z)-1,5-octadien-3-ol, and nonanol. These were detected in high amounts in ascidians and all fermented products. Aldehydes (octanal, (E)-2-octenal, 2,4-heptadienal, and nonanal) and ketones (1-oten-3-one and 2-heptanone) with fatty and mushroom odors were detected as major compounds, whereas nine ethyl esters were detected only in product A.