• Title/Summary/Keyword: volatile acids

Search Result 960, Processing Time 0.046 seconds

Volatile Fatty Acid Production from Saccharina japonica Extracts by Anaerobic Fermentation: Evaluation of Various Environmental Parameters for VFAs Productivity (혐기성 발효에 의한 다시마 추출물로부터 휘발성 유기산 제조: 휘발성 유기산 생산성에 대한 환경적 영향인자 평가)

  • Choi, Jae Hyung;Song, Min Kyung;Chun, Byung Soo;Lee, Chul Woo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • Volatile fatty acids (VFAs) production from marine brown algae, Saccharina japonica, was investigated in anaerobic dark fermentation. In order to evaluate the VFAs productivity, various experimental parameters (i.e., physicochemical pre-treatment, microorganism inoculation ratio, substrate concentration, and pH) were evaluated. According to the physicochemical pre-treatment methods, the maximum concentrations of VFAs were obtained in the order of sulfuric acid, subcritical water and subcritical water with lipid-extraction. Also, we investigated the operating parameters such as microorganism inoculation ratio (MV/M = 10 to 30), the substrate concentration (18.0 to 72.0 g/L) and pH (6.0 to 7.0) in sulfuric acid pre-treatment method. When the substrate concentrations were 18.0, 36.0, 54.0 and 72.0 g/L at $35^{\circ}C$, microorganism inoculation ratio 15, pH 7.0 for 372 hours, the maximum concentrations of VFAs were respectively 9.8, 13.9, 18.6 and 22.3 g/L. The change in VFAs concentrations was detected that acetic- and propionic acids increased according to increasing pH, while the butyric acid increased with decreasing pH. The VFAs obtained from concentration and separation process may be used as basic chemistry materials and bio-fuel, and they will expect to produce alternative energy of fossil fuel.

Changes in Taste Compounds during Onion Vinegar Fermentation (양파초 발효과정 중의 정미성분 변화)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.298-305
    • /
    • 2016
  • Prior research has attempted to develop a method for fermentation of onion vinegar to satisfy customer quality standard. Onion wine (OW) and onion vinegar (OV) were produced by alcoholic and acetic fermentation of onion extracts (OE) using Saccharomyces cerevisiae and Acetobacter pasteurianus, and their taste compounds (non-volatile organic acids, non-protein N compounds, and free sugars) were determined. Main components of non-volatile organic acids were malic acid (50.1%) and citric acid (26.9%) in OE, whereas malic acid (28.1%), acetic acid (20.8%), lactic acid (20.1%), citric acid (13.3%), and succinic acid (12.0%) were detected in OW. Total concentrations of non-volatile organic acids in OV were 4,612.0 mg/100 g, which was 3.9 and 2.3 times higher than those of OE and OW, respectively. Non-volatile organic acids except malonic acid and acetic acid were reduced during acetic fermentation. Non-protein N compounds increased 4.23-fold ($41,526.8{\mu}g/100g$) during alcohol fermentation, and urea content was the highest of non-protein N compounds at $33,816{\mu}g/100g$. The reduced values in OV might be used as a nutritious element of Acetobacter pasteurianus. Free sugars (glucose, fructose, and sucrose) were detected in OE, whereas only fructose was absent in OW and OV.

The Relation of the Quality of Oriental Tobaccos to their Chemical Constituents II. Quality and Chemical Properties as Affected by Soil Moisture (환경요인에 따른 오리엔트종 잎담배의 화학적 특성과 품질과의 관계 II. 토양수분의 영향)

  • Ryu, Myong-Hyun;Jung, Hyung-Jin;Kim, Yong-Ok;Lee, Byung-Chul;Yu, Ik-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.242-247
    • /
    • 1988
  • To elucidate the relationship of the quality of aromatic tobaccos to their chemical constituents, certain chemical components and leaf quality by price were compared among cured leaves produced under different soil moisture levels during growing season. As the soil moisture increased, plant height and the length and width of largest leaf increased. days to flower was shortened and total chlorophyll and carotenoid content of green leaf decreased. As the soil moisture increased, leaf quality was deteriorated. The content of nicotine, pet. ether ext. and total nitrogen increased with slight increment of nonvolatile organic acids and higher fatty acids, but ash content and pH of cured leaves decreased under high soil moisture content. Volatile organic acids such as 3-methyl pentanoic acid, the main compounds contributing to the aroma of oriental tobacco, and most volatile neutrals decreased conspicuously under high soil moisture. The content of pet. ether ext., volatile organic acids, volatile neutrals, ash and pH of cured leaves were found to be the appropriate factors for the quality evaluation of aromatic leaves grown under under different soil moisture.

  • PDF

Studies on the Organic Acid in Some Species of Marine Alage (해조류의 유기산에 관한 연구)

  • 김영진
    • Journal of the Korean Home Economics Association
    • /
    • v.9 no.2
    • /
    • pp.30-33
    • /
    • 1971
  • 1. The present paper deals with the composition of organic acid in Porphyra tenera, roasted Porphyra tenera and Undaria pinnatifida. 2. There are little differences in the composition of organic acids among three of them, Porphyra tenera, roasted Porphyra tenera and Ucdaria pinnatifida. Butyric, propionic, acetic, fumaric, succinic, lactic, oxalic, malic, citric and unknown two acids were identifled by silica gel colcumn chromatography. 3. All of volatile organic acid, namely butyric, propionic and acetic acid in Porphyra tenera were decreased during the raosting.

  • PDF

Volatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne (모과의 휘발성 Flavor 성분에 관한 연구)

  • Chung, Tae-Young;Cho, Dae-Sun;Song, Jae-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.176-187
    • /
    • 1988
  • Volatile flavor components in the Chinese quince fruits were trapped by simultaneous steam distillation-extraction method, and these were fractionated into the neutral, the basic, the phenolic and the acidic fraction. In the identification of carboxylic acids, the acidic fraction was methylated with diazomethane. Volatile flavor components in these fractions were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The total of one hundred and forty-five compounds from the steam volatile concentrate of the Chinese quince fruits were identified: they were 3 aliphatic hydrocarbons, 1 cyclic hydrocarbon, 4 aromatic hydrocarbons, 9 terpene hydrocarbons, 17 alcohols, 3 terpene alcohols, 6 phenols, 21 aldehydes, 7 ketones, 28 esters, 27 acids, 3 furans, 2 thiazoles, 2 acetals, 3 lactones and 9 miscellaneous ones. The greater part of the components except for carboxylic acids were identified from the neutral fraction. The neutral fraction gave a much higher yield than others and was assumed to be indispensable for the reproduction of the aroma of the Chinese quince fruits in a sensory evaluation. According to the results of the GC-sniff evaluation, 1-hexanal, cis-3-hexenal, trans-2-hexenal, 2-methyl-2-hepten-6-one, 1-hexanol, cis-3-hexenol, trans, trans-2, 4-hexadienal and trans-2-hexenol were considered to be the key compounds of grassy odor. On the other hand, esters seemed to be the main constituents of a fruity aroma in the Chinese quince fruits.

  • PDF

Volatile Flavor of Atractylodes japonica koidzumi (삽주의 휘발성 향기성분)

  • 이종원;이재곤;김미주;도재호;양재원
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • An attempt was made in this study to analyze volatile flavor components of A. macrocephala Koidz. and A. lanacea DC. (Atractylodes japonica Koidzumi). Essential oils in A. macrocephala Koidz. and. A. lanacea DC. were isolated by a simultaneous steam distillation and extraction(SDE) method using n-pentane/diethy ether as solvent. A total of 30 and 28 components were identified by GC/MS from the essential oils of A. macrocephala Koidz. (18 hydrocarbons. 2 carbonyls, 5 alcohols, 5 esters) and A. lanacea DC.(14 hydrocarbons, 6 carbonyls, 4 alcohols, 3 esters, 1 acids), respectively. The major volatile flavor components in A. macrocephala Koidz. and A. lanacea DC. were furanodiene(27.9%, 15.7%), $\alpha$-cyperone(8.1%. 22.5% ), alloaromadendrene(2.9%, 4.7% ), (1,1-biphenyl)-4-carbon aldehyde 0%, 8.7% ) were found, respectively. Ten components including limonene, p-cymene, p-hymen-8-ol, (1,1-biphenyl)-4-carbox aldehyde were identified in A. lanacea DC, but not in A. macrocephala Koidz. and eight components including $\alpha$-copanene, isocaryophyllene, $\beta$-himahalene. germacrene B were and identified in A. macrocephala Koidz. but not in A. lanacea DC.

  • PDF

Distinguishing Aroma Profile of Highly-Marbled Beef according to Quality Grade using Electronic Nose Sensors Data and Chemometrics Approach

  • Utama, Dicky Tri;Jang, Aera;Kim, Gur Yoo;Kang, Sun-Moon;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.240-251
    • /
    • 2022
  • Fat deposition in animal muscles differs according to the genetics and muscle anatomical locations. Moreover, different fat to lean muscle ratios (quality grade, QG) might contribute to aroma development in highly marbled beef. Scientific evidence is required to determine whether the abundance of aroma volatiles is positively correlated with the amount of fat in highly marbled beef. Therefore, this study aims to investigate the effect of QG on beef aroma profile using electronic nose data and a chemometric approach. An electronic nose with metal oxide semiconductors was used, and discrimination was performed using multivariate analysis, including principal component analysis and hierarchical clustering. The M. longissimus lumborum (striploin) of QG 1++, 1+, 1, and 2 of Hanwoo steers (n=6), finished under identical feeding systems on similar farms, were used. In contrast to the proportion of monounsaturated fatty acids (MUFAs), the abundance of volatile compounds and the proportion of polyunsaturated fatty acids (PUFAs) decreased as the QG increased. The aroma profile of striploin from carcasses of different QGs was well-discriminated. QG1++ was close to QG1+, while QG1 and QG2 were within a cluster. In conclusion, aroma development in beef is strongly influenced by fat deposition, particularly the fat-to-lean muscle ratio with regard to the proportion of PUFA. As MUFA slows down the oxidation and release of volatile compounds, leaner beef containing a higher proportion of PUFA produces more volatile compounds than beef with a higher amount of intramuscular fat.

Comparative analysis of volatile and non-volatile flavor compounds in rice paste made by α-amylase according to cultivars (α-amylase를 이용하여 제조한 쌀 페이스트의 품종에 따른 휘발성비휘발성 향미성분 비교분석)

  • Son, Eun Young;Kim, Hye Won;Kim, Sun Ah;Lee, Sang Mi;Paek, Se Hee;Kim, Sun Hee;Seo, Yong Ki;Park, Hye-Young;Oh, Sea-Kwan;Kim, Young-Suk
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • Rice that the half of population in the world eats as a staple food is mostly produced and consumed in Asia. However, its consumption is nowadays decreasing mainly due to diet diversity. Accordingly, some attempts are in demand to enhance the utilization of rice. In this study, profiling of volatile and non-volatile flavor components in rice pastes obtained by ${\alpha}$-amylase was performed and compared according to nine different rice cultivars domestically cultivated in Korea using gas chromatography-mass spectrometry combined by solid phase microextraction and gas chromatography-time of flight-mass spectrometry after a derivatization, respectively. In total, 46 volatile compounds identified included 6 alcohols, 6 aldehydes, 4 esters, 4 furan derivatives, 4 ketones, 1 acid, 1 sulfur-containing compound, 7 hydrocarbons, 5 aromatics and 8 terpenes. The non-volatile flavor components found were composed of 12 amino acids, 6 sugars and 4 sugar alcohols. In principal component analysis, rice paste samples could be discriminated according to cultivars on the score plots of volatile and non-volatile flavor compounds. In particular, some volatile compounds such as pentanal and 4,7-dimethylundecane could contribute to distinguish Senong 17 white and Senong 17 brown, whereas ethanol, 6-methylhep-5-en-2-one, and tridecane could be highly related to the discrimination of Iipum from other cultivars. Among non-volatile compounds, some amino acids such as glycine, serine and ${\gamma}$-aminobutyric acid and some sugars such as sucrose and fructose were mainly responsible for the discrimination of Danmi from the other cultivars. On the other hand, galactose, arabitol and mannose were more closely related to Senong 17 white than Senong 17 brown.

Studies on the Processing of Low Salt Fermented Sea Foods 10. Changes in Volatile Compounds and Fatty Acid Composition during the Fermentation of Yellow Corvenia Prepared with Low Sodium Contents (저식염 수산발효식품의 가공에 관한 연구 10. 저식염조기젓 숙성중의 휘발성성분 및 지방산조함의 변화)

  • CHA Yong-Jun;Lee Eung-Ho;PARK Du-Cheon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.529-536
    • /
    • 1986
  • By modified method yellow corvenia(called $Y_3$) was prepared with $4\%$ salt, $4\%$ KCl, $6\%$ sorbitol, $0.5\%$ lactic acid and $4\%$ alcohol extract of red pepper to improve the quality of fermented sea food. In this study, changes of volatile compounds and fatty acid composition obtained from modified fermented yellow corvenia($Y_3$) were experimented during fermentation, comparing with conventional fermented yellow corvenia(called $Y_1,\;20\%$ of salt contents). Total lipid of yellow corvenia was composed of $78.1\%$ of neutral lipid, $21.2\%$ of phospholipid and $0.7\%$ of glycolipid. And monoeonoic acid was held $37.4\%$ of fatty acid composition of total lipid and saturated fatty acid ($34.8\%$), polyenoic acid ($27.7\%$) were followed. Saturated fatty acid($C_{14:0},\;C_{16:0},\;C_{18:0}$) in $Y_1,\;Y_3$ increased, polyenoic acid ($C_{22:6}\;C_{22:5}\;C_{20:5}$) decreased while monoenoic acid($C_{16:1}\;C_{18:1}$) in those was little fluctuated during fermentation. Thirty-three kinds of volatile component in whole volatile compounds obtained from $Y_1,\;Y_3$ at 90 days fermentation were identified, and composed of some hydrocarbons (8 kinds), alcohols (7 kinds), acids (6 kinds), aldehydes(4 kinds), sulfides(2 kinds), ketones (2 kinds), one of phenol and 3 kinds of the other components. Among the whole volatile compounds 2-ethoxy ethanol and was held $79.35\%$ in $Y_3$, whereas nonadecane was held $75.85\%$ in $Y_1$. During fermentation 8 kinds of volatile acids, 5 kinds of amines and 9 kinds of carbonyl compounds were also detected. Those volatile acid such as acetic acid, isovaleric acid, n-caproic acid, n-butyric acid were the major portion of total volatile acids in $Y_3$ at 90 days fermentation. Meanwhile, carbonyl compounds such as ethanal, 2-butanone and butanal were the major ones, while TMA held the most part of volatile amines in $Y_3$ during fermentation. From the result of sniff test, the components which are believed to contribute to the characteristic flavor of fermented product $Y_1,\;Y_3$ are deduced to be volatile acid, carbonyl compounds and amines in order. Conclusively, there was little difference in composition of volatile components, but merely a little difference in content of those between $Y_3$ and $Y_1$.

  • PDF

Identification of Volatile Essential Oil, and Flavor Characterization and Antibacterial Effect of Fractions from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Huttuynia cordata Thunb- (어성초 휘발성 정유성분의 동정과 분획물의 향특성 및 항균활성 -I. 어성초의 휘발성 정유성분의 동정-)

  • Kang, Jung-Mi;Cha, In-Ho;Lee, Young-Kuen;Ryu, Hong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.209-213
    • /
    • 1997
  • Since Houttuynia cordata is well known as a medicinal herb, due to its antibacterial activity on various microorganisms, present investigation was performed to identify the flavor compounds for volatile essential oil. Volatile essential oil was collected by simultaneous distillation-extraction(SDE), and then the oil components were separated on HP-5 capilliary column$(25m{\times}0.25mm\; i.d.)$ and identified those components by GC-MS. Fifty two compounds were isolated from the volatile essential oil of Houttuynia cordata and forty four were positively identified by GC-MS. The volatile compounds were composed mainly of terpenoids(25 classes), aldehydes(7 classes), alcohols(4 classes), ketones(3 classes), acids(1 class) and miscellaneous compounds(4 classes). Of these, the major compounds were ${\beta}-myrcene$, ${\beta}-ocimene$, decanal, 2-undecanone and geranyl propionate.

  • PDF