• 제목/요약/키워드: void shape

검색결과 167건 처리시간 0.027초

$CO_2$ Laser에 의한 Polyamide-6 소결과 그 영향에 관한 연구 (A Study on Polyamide-6 Sintering and Effect by $CO_2$ Laser)

  • 배성우;김동수;안영진;김형일;최기섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.197-198
    • /
    • 2006
  • In the solid freeform fabrication (SFF) system using selective laser sintering (SLS), polyamide-12 powder is currently recognized as general material. In this study, some kinds of polyamide-6 powders with different shape and particlesize were fabricated to investigate the formability, the microstructure and mechanical properties. Also, to develop a more elaborate and rapid system, this study employs a new SLS device with a 3-axis dynamic focusing scanner system instead of the existing fe lens used in commercial SLS. Polyamide-6 powders having the average size of 100 m were treated thermally in order to keep the spherical symmetry in shape. These polyamide-6 powders were mixed with polyamide-12 powders having the average size of 50 m to give the bimodal distribution of size. These mixed powders showed the better fabrication in the selective laser sintering process because the smaller particles of polyamide-11 played an important role in the compact packing of powders by filling the void space between the large particles of polyamide-6. Also, Experiments have performed to evaluate the effect of a scanning path and sintering parameters by fabricating the various 3D objects.

  • PDF

프랙탈을 이용한 ZnO 바리스터 표면 구조 및 전기적 특성 (The Structure and Electrical Characteristics of ZnO Varistors Surface using-Fractal)

  • 오수홍;홍경진;이진;이준웅;김태성
    • 한국전기전자재료학회논문지
    • /
    • 제13권10호
    • /
    • pp.834-839
    • /
    • 2000
  • The structural properties that SEM photograph of ZnO varistors surface studied by fractal mathematics program were investigated to verify the relations of electrical characteristics. The SEM photograph of ZnO varistors surface were changed by binary code and the grain shape of that were analyzed by fractal dimension. The void of ZnO varistors surface was found by fractal program. The relation between grain density and electrical properties depend on fractal dimension. The grain size in ZnO varistors surface was decreased by increasing of Sb$_2$O$_3$ addition. The spinel structure was formed by Sb$_2$O$_3$addition and it was depressed the ZnO grain formation. The grain size of ZnO by Sb$_2$O$_3$addition were from 5 to 10[${\mu}{\textrm}{m}$]. Among of ZnO varistors, fractal dimension of ZnO4 was very high as a 1.764. The density of grain boundary in ZnO2 and ZnO3 varistors surface was 15[%] by formed spinal structure. The breakdown electric field of ZnO2 that fractal dimension has 1.752 was very high to be 8.5[kV/cm]. When the fractal dimensin was high, the grain shape of ZnO varistors was complex and the serial layers of ZnO grain was increased.

  • PDF

공기와 물의 수평유동에 있어 관의 급격한 입구축소 모양이 단상 및 이상유 압력강하에 미치는 영향에 관한 실험적 연구 (An Experimental Investigation of the Effect of the Entrance Shape of Sudden Contraction on Single and Two-Phase Pressure Drop in Horizontal Air-Water Flow)

  • Chun, Moon-Hyun;Baek, Joo-Seok;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.123-133
    • /
    • 1989
  • 관의 급격한 축소모양이 단상 및 이상유의 수평유동 압력강하에 미치는 영향을 실험적으로 연구하였다. 급격하게 축소되는 수평관속을 흐르는 단상 및 이상유동에서 그 축소되는 입구의 모양이 압력강하에 미치는 영향을 조사하기 위해서 4가지의 다른 입구모양에 대해 총 167회의 압력강하 측정을 수행하였다. 여기서 얻은 실험자료로부터 급격한 입구축소에 의한 압력강하를 계산하여 단상 및 이상유동에 관한 해석적 모델의 예측값과 비교하였다. 단상유동에서의 실험값과 예측값과의 오차범위는 대체로 $\pm$25% 이내인데 반하여, 이상유동의 경우는 균일모델보다 더 잘 맞는 후프스(Hoopes)모델도 실험값보다 45% 정도나 적게 예측하고 있다. 특히 이상유동에 대해서는 기포분율과 액상의 질량속도가 급격한 유로축소에 의한 압력강하에 미치는 영향도 합께 조사하였다.

  • PDF

현대 건축에서 나타난 현상적 공간에 관한 연구 - 스위스건축가 작품을 중심으로 - (A Study on The Phenomenal Space in The Contemporary Architecture - Focus on the analysis of The architecture of Swiss architects -)

  • 이길호;이정욱
    • 한국실내디자인학회논문집
    • /
    • 제22권6호
    • /
    • pp.79-87
    • /
    • 2013
  • The purpose of this study clarifies an expression characteristic of the phenomenal space. The architecture is an interface between human and nature. Nature presents herself as phenomena. Thus, the phenomenal space should be approached as the essence of architecture that is to accommodate nature. Phenomenon is related to everyday life and shares flow naturally within it. The phenomenon and everyday life form a relationship through the mediating elements that are time, place, and image. If these mediating elements are developed as spatialized elements, time becomes the converse, place becomes the overlap, and shape becomes the revealing. Also, spatial components that are substituted with these elements are void/solid, form, and materials. The relational characteristics of phenomenal space can be identified through these, and such characteristics are one-ness, continuity, and coincidence of opposites. Phenomenal space is expressed with spatial tones and accepted as spatial atmospheres. For the analysis, 15 works of swiss architects were selected to which spatial elements were applied. And It were composed that analysis by arranging these components as the relational network found that expression characteristics. Trough the analysis, It was found that expression characteristics of phenomenal space of the architecture of Swiss architects were prototypicality, primitiveness, and originality. As a results, It is considered that the role of the space that contains the value of everyday life, the value of the phenomenon is necessary.

강소주택 실효성 논의를 위한 일본 소형주택 공간 활용 사례 분석 (A Case Study of Space Utilization on Compact Houses in Japan to build Compact-but-effective Houses in Korea)

  • 서민우;한영호
    • 한국실내디자인학회논문집
    • /
    • 제21권1호
    • /
    • pp.148-158
    • /
    • 2012
  • The objective of this study is to find a possible application of small space utilization of GangSo Housing, so called compact-but-effective housing, through analyzing that of Japanese small housing. We analyze openness of view and flexibility of spaces divided by the physical and architectural aspects as first component and the psychological and interior space aspects as second component. The results showed that Japanese small houses have various unit plan compared to uniformity of Korean houses. Openness of view in Japanese small housing is accomplished by letting in light from the outside using position and shape of the window, looking more spacious using courtyard, void spaces, or sliding door hanging from the ceiling, and creating deception of view using floor-wall plan and appropriate materials. Flexibility of spaces is achieved by combination of first and second components, multipurpose of space and furniture, and variety of storage methods. It is necessary to improve spatial efficiency with consideration of volume-metric planing rather than flat-plane and develop various unit plans to meet residents' needs and demands on compact-but-effective houses.

  • PDF

Numerical study of anomaly detection under rail track using a time-variant moving train load

  • Chong, Song-Hun;Cho, Gye-Chun;Hong, Eun-Soo;Lee, Seong-Won
    • Geomechanics and Engineering
    • /
    • 제13권1호
    • /
    • pp.161-171
    • /
    • 2017
  • The underlying ground state of a railway plays a significant role in maintaining the integrity of the overlying concrete slab and ultimately supporting the train load. While effective nondestructive tests have been used to evaluate the rail track system, they can only be performed during non-operating time due to the stress wave generated by active sources. In this study, finite element numerical simulations are conducted to investigate the feasibility of detecting unfavorable substructure conditions by using a moving train load. First, a train load module is developed by converting the train load into time-variant equivalent forces. The moving forces based on the shape functions are applied at the nodes. A parametric study that takes into account the bonding state and the train class is then performed. All the synthetic signals obtained from numerical simulations are analyzed at the frequency domain using a Fast Fourier transform (FFT) and at the time-frequency domain using a Short-Time Fourier transform (STFT). The presence of a void condition amplifies the acceleration amplitude and the vibration response. This study confirms the feasibility of using a moving train load to systematically evaluate a rail track system.

고출력 $CO_2$레이저 용접에서 키홀의 불안정으로 발생한 기공의 절감방법 (Reduction Method of Porosity Formed by Instability of Keyhole in High Power $CO_2$ Laser Welding)

  • 김정일;조민현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.464-471
    • /
    • 2002
  • Porosity formation in partial penetration welds by high power lasers is a serious problem in industry. There are two main causes that induce porosity formation. One form of porosity is due to gases (e.g. hydrogen, oxygen) dissolving into the weld pool because of the high temperature and then the rapid solidification traps gases as a bubble in the weld metal. The second problem is voids formed by the keyhole collapsing due to unstable keyhole fluid dynamics. The voids that form at the bottom of the keyhole are relatively large and irregular in shape compared to the gas bubbles; this void formation is the primary concern in this paper. The reduction of voids formed by keyhole collapse is achieved by improving the stability of keyhole. Two methods to improve keyhole stability are discussed in this paper: pulse modulation and beam incident angle. Pulse modulation of the laser beam was performed between 100 Hz and 500 Hz to find out the optimum frequency for the keyhole dynamics. The incident beam angle changed the impact angle of the laser beam to the work surface in a range of 0 to 25 degrees. Glycerin in a semi-solidified state is used as a medium for performing the welding because its transparency allows of visualization of the keyhole.

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석 (Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube)

  • 박치용;유기완
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

전기저항 콘 프로브를 이용한 해안지반의 간극률 산정 (Porosity estimation using electrical resistance Cone Probe in offshore soils)

  • 이종섭;김준한;윤형구;조태현;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.127-133
    • /
    • 2008
  • The electrical resistivity methods have been commonly used for figuring out the ground layers. The purpose of this paper, differently from previous methods, is not only to figure out the layers but also to develope a equipment and a method to analyze ground porosity. Equipment has a shape of cone, which can be coupled with drilling rods. A field penetration test was performed to test application in Incheon Chungla area. Through the field test soil resistances were measured. To calculate soil porosity along the depth, Archie's law is applied. The results show that a new equipment and porosity analysis method using Archie's law can distinguish soil layers and precisely measure soil porosity.

  • PDF