• Title/Summary/Keyword: void holes

Search Result 13, Processing Time 0.019 seconds

Study on the Relationship between Concentration of JGB and Current Density in TSV Copper filling (TSV 구리 필링 공정에서 JGB의 농도와 전류밀도의 상관 관계에 관한 연구)

  • Jang, Se-Hyun;Choi, Kwang-Seong;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.99-104
    • /
    • 2015
  • The requirement for success of via filling is its ability to fill via holes completely without producing voids or seams. Defect free via filling was obtained by optimizing plating conditions such as current mode, current density and additives. However, byproducts stemming from the breakdown of these organic additives reduce the lifetime of the devices and plating solutions. In this study, the relationship between JGB and current density on the copper via filling was investigated without the addition of other additives to minimize the contamination of copper via. AR 4 with $15{\mu}m$ diameter via were used for this study. The pulse current was used for the electroplating of copper and the current densities were varied from 10 to $20mA/cm^2$ and the concentrations of JGB were varied from 0 to 25 ppm. The map for the JGB concentration and current density was developed. And the optimum conditions for the AR 4 via filling with $15{\mu}m$ diameter were obtained.

Developing the Electrode Board for Bio Phase Change Template (바이오 상변화 Template 위한 전극기판 개발)

  • Li, Xue Zhe;Yoon, Junglim;Lee, Dongbok;Kim, Sookyung;Kim, Ki-Bum;Park, Young June
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.715-719
    • /
    • 2009
  • The phase change electrode board for the bio-information detection through electrical property response of phase change material was developed in this study. We manufactured the electrode board using Aluminum first that is widely used in conventional semiconductor device process. Without further treatment, these aluminum electrodes tend to contain voids in PETEOS(plasma enhanced tetraethyoxysilane) material that are easily detected by cross-sectional SEM(Scanning Electron Microscope). The voids can be easily attacked and transformed into holes in between PETEOS and electrodes after etch back and washing process. In order to resolve this issue of Al electrode board, we developed a electrode board manufacturing method using low resistivity TiN, which has advantages in terms of the step-coverage of phase change($Ge_2Sb_2Te_5$, GST) thin film as well as thermodynamic stability, without etch back and washing process. This TiN material serves as the top and bottom electrode in PRAM(Phase-change Random Access Memory). The good connection between the TiN electrode and GST thin film was confirmed by observing the cross-section of TiN electrode board using SEM. The resistances of amorphous and crystalline GST thin film on TiN electrodes were also measured, and 1000 times difference between the amorphous and crystalline resistance of GST thin film was obtained, which is well enough for the signal detection.

BETTI NUMBERS OF GAUSSIAN FIELDS

  • Park, Changbom;Pranav, Pratyush;Chingangbam, Pravabati;Van De Weygaert, Rien;Jones, Bernard;Vegter, Gert;Kim, Inkang;Hidding, Johan;Hellwing, Wojciech A.
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; ${\beta}_0$ is the number of connected regions, ${\beta}_1$ is the number of circular holes (i.e., complement of solid tori), and ${\beta}_2$ is the number of three-dimensional voids (i.e., complement of three-dimensional excursion regions). Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. ${\beta}_0$ dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). ${\beta}_1$ dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and ${\beta}_2$ corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum n in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as n decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.