• Title/Summary/Keyword: vital gluten content

Search Result 5, Processing Time 0.016 seconds

Effect of Soybean Milk Residues Powder on the Quality of Dough (두유박 분말 첨가가 식빵 반죽에 미치는 영향)

  • Shin, Doo-Ho;Lee, Yeon-Wha
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.381-391
    • /
    • 2006
  • The rheological properties of dough made the substitution of wheat flour(composite flour) at the levels of 0%, 5%, 10% and 15% soymilk residue flour, with addition of vital wheat gluten at the levels of 3, 6 and 9% were investigated. And nutrition contents of soymilk residue flour were analyzed. The results were as follows; Principal components of soymilk residue flour were 22.0% crude protein, 13.2% crude lipid, 54.3% carbohydrate, 27.2% dietary fiber and $220{\mu}g/g$ isoflavones. Free amino acid component of soymilk residue were L-glutamic acid, L-leucine, L-lysine, L-valine, L-phenylalanine, L-isoleucine, L-threonine, L-methionine and L-cystine. Total dietary fiber content of bread with soymilk residue and wheat flour were 5% soymilk residue; 3.50%, 10% soymilk residues; 4.65%, 15% soymilk residues; 5.96%, and wheat flour bread: 2.1% respectively Mixing water absorption capacity was increased by increasing amounts of added soymilk residue and vital wheat gluten. Dough development time was increased by increasing amounts of added soymilk residues, while decreased by increasing amounts of vital wheat gluten. The dough volume of composite flour with 5%, 10% and 15% soymilk residue flour were the smaller than wheat flour dough. But the dough volume was increased by added vital wheat gluten, and the composite flour with 5% soymilk residue flour and 9% vital wheat gluten was better than the others. This study proved that the dough volume of composite flour with 5% soymilk residue flour and 9% vital wheat gluten was better than the others. On the other hand, the soymilk residue flour contains dietary fiber, isoflavone, protein, lipid and carbohydrate. Therefore the soymilk residue flour will be very useful as food material.

Effects of Vital Wheat Gluten on Quality Characteristics of White Pan Bread Containing Resistant Starch (활성글루텐이 저항전분을 함유한 식빵의 품질 특성에 미치는 영향)

  • Kim, Yu-Jin;Lee, Jeong-Hoon;Choi, Mi-Jung;Choi, Doo-Ri;Lee, Si-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • This study was carried out to evaluate the effect of wheat gluten on quality characteristics of white pan bread with 10% resistant starch. White pan bread was fortified with wheat gluten at levels of 2%, 4% and 6% w/w. The pH of dough and white pan bread, specific loaf volume, water activity, baking loss rate, crumb color, hardness, and sensory evaluation were analyzed for quality characteristics. The pH of processed dough and white pan bread with additional vital wheat gluten was lower than that of control, and pH increased with increasing wheat gluten content. Water activity was lower in white pan bread with added vital wheat gluten than in the control, however there were no significant differences. Specific loaf volume revealed a higher value in tests than in the control, and the products revealed a higher specific loaf volume with higher amounts of vital wheat gluten. However, the baking loss rate decreased with increasing wheat gluten content. In terms of crumb color analysis, L, a, and b values lowered with increasing wheat gluten. Hardness appeared to be lower in tests than in the control, and the test with 6% wheat gluten showed the lowest value among the products. In a sensory evaluation, the product with 4% wheat gluten revealed the highest score. As a result of this study, 4% wheat gluten is considered to be the reasonable level in preparing white pan bread with 10% resistant starch.

Suitable Dough Formula for Yeast-Raised Breadmaking Using Frozen Dough (냉동(冷凍)반죽을 이용(利用)한 발효(醱酵)빵 제조(製造)에 있어서 적정(適正)반죽의 조성(組成))

  • Suh, Seok Chool;Bang, Kwang Woong;Song, Hyung Ik;Chung, Ki Taek
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.137-143
    • /
    • 1988
  • We studied suitable dough formula for yeast-raised breadmaking using frozen dough prepared by straight no-time method, centering around breadmaking quality. The most suitable dough formula based on 1,000 g of wheat flours was as follows : compressed yeast ; 30 g, sucrose ; 50 g, salt ; 20 g, shortening ; 40 g, potassium bromate ; 75mg, L-ascorbic acid ; 200mg, yeast food ; 3 g, vital wheat gluten ; 30 g, calcium phosphate, monobasic ; 400mg, sodium stearoyl-2-lactylate ; 8 g, water ; 680 g. Breadmaking test employing this formula showed that gassing power and fermentation time were suitable and higher specific loaf volume was obtainable. By using much emulsifiers and dough conditioners, frozen injury of dough was controlable in spite of the addition of more content of water(68%) than that of water (62%) obtained from the farinograph data.

  • PDF

Effect of particle size of rice flour on popping rice bread (쌀가루 입도가 쌀 식빵의 팽화에 미치는 영향)

  • Park, Mi-Kyung;Kang, Soon-Ah;Lee, Kyung-Hee
    • Korean journal of food and cookery science
    • /
    • v.22 no.4 s.94
    • /
    • pp.419-427
    • /
    • 2006
  • The purpose of this study is to promote the substitution of rice flour for wheat flour in making bread and thus the consumption of rice by examining the effect of particle size of rice flour on leavening rice bread. For this purpose, several experiments were carried out. With regard to particle size distribution, 59.45% of wheat flour had passed 200 mesh and 3 kinds of rice flour milled to penetrate into 20, 35, and 45 mesh (S1, S2 and S3) had passed 21.88%, 33.1% and 36.38% of those for 200 mesh, respectively. To leaven the rice flour dough to bread, 25% of vital gluten was needed. To determine the optimal water quantity for rice bread dough, the hardness of wheat and rice flour dough was measured by rheometer. The appropriate water quantity for S1, S2 and S3 was set at 285 ml , 295 ml and 335${\sim}$340m1, respectively. The loaf volume index of the wheat flour bread was 6.24, while that of and rice flour bread S1, S2 and S3 was 5.38, 5.50 and 5.75, respectively. These results indicated that the loaf volume index of rice flour bread is lower than that of wheat flour bread, but that the volume of rice flour bread was increased with fuel particle size of rice flour. Scanning electron microscopy (SEM), image of the wheat bread tissue at a magnification of 35 times showed long, large, oval-shaped, air cells and thin cell membrane, as well as small air cells, whereas the images of rice flour showed angular, circular, air cells and rough and thick cell membrane. The size and number of air cells in the rice bread were larger in S2 and S3 with fuel particle flours than in S1. In particular, the bread made with S3 contained many air cells that were as large as those in the wheat bread were. In addition, when the inner cell wall was magnified 1500 times, almost no small air cell was observed in C and S3, whereas many fine air cells were observed in the cell wall of S1 and S2.

Effects of Semolina on Quality Characteristics of the Rice Noddles (세몰리나 첨가가 쌀국수의 품질특성에 미치는 영향)

  • Kim, Byong Ki;Park, Jung Eun;Zu, Genuine
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Durum wheat semolina was added into wet-milled rice flour in order to improve chewy texture, firm bite ("al dente"), and resistance to overcooking of the ordinary rice noodles. Wet noodles were prepared by mixing 0 (control), 5, 10, 15, and 20% (w/w) of semolina per semolina and rice flour mixtures. Vital gluten (4%, w/w) and salt (2%, w/w) were added to form the pliable strands of wet noodles and final moisture contents of the raw mixtures were equalized at 45%. Pasting properties of the suspended flour mixtures as measured by the Rapid Visco Analyser (RVA) showed slight increases (up to $1.2^{\circ}C)$ in pasting temperatures along with the considerable decreases in peak viscosities as semolina increased at over 15%. Reduced shear thinning and retrogradation of the starch solution that leads to hardening of the cooked noodles were indicated by lowered breakdown viscosities and gaps between finaland setback viscosities from the RVA viscogram as semolina increased at over 10%. Reduced water uptake and turbidity increases of the cooking water as caused by the soluble starches from the noodle were also noted as the content of semolina increased. More or less significant (p<0.05) decreases in colorimetric L (lightness) value of the raw- and cooked noodles were observed as semolina increased while a- (redness) and b (yellowness) values were rather increased at the same moment. Textural properties of the cooked noodles such as hardness, springiness, cohesiveness, gumminess, and chewiness from TPA tests were significantly (p<0.05) influenced by added semolina, even at 5%-levels or more. It can be concluded that addition of semolina into rice flour could provide easy handling of the wet noodles without distortion during transportation, integrity and firm bite of the cooked noodles, and less loss of starch to the cooking water in comparison with the ordinary rice noodle. It was finally suggested that optimum level of the semolina in the product was approximately 10% for the quality wet rice noodle products.