• Title/Summary/Keyword: visual servoing system

Search Result 73, Processing Time 0.023 seconds

Posture Stabilization Control for Mobile Robot using Marker Recognition and Hybrid Visual Servoing (마커인식과 혼합 비주얼 서보잉 기법을 통한 이동로봇의 자세 안정화 제어)

  • Lee, Sung-Goo;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1577-1585
    • /
    • 2011
  • This paper proposes a posture stabilization control algorithm for a wheeled mobile robot using hybrid visual servo control method with a position based and an image based visual servoing (PBVS and IBVS). To overcome chattering phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed hybrid visual servo control law introduces the fusion function based on a blending function. Then, the chattering problem and rapid motion of the mobile robot can be eliminated. Also, we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture stabilization control law using hybrid visual servoing is verified by a theoretical analysis and simulation and experimental results.

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.

A Study on Robot OLP Compensation Based on Image Based Visual Servoing in the Virtual Environment (가상 환경에서의 영상 기반 시각 서보잉을 통한 로봇 OLP 보상)

  • Shin Chan-Bai;Lee Jeh-Woon;Kim Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • It is necessary to improve the exactness and adaptation of the working environment for the intelligent robot system. The vision sensor have been studied for a long time at this points. However, it has many processes and difficulties for the real usages. This paper proposes a visual servoing in the virtual environment to support OLP(Off-Line-Programming) path compensation and supplement the problem of complexity of the old kinematical calibration. Initial robot path could be compensated by pixel differences between real and virtual image. This method removes the varies calibrations and 3D reconstruction process in real working space. To show the validity of the proposed approach, virtual space servoing with stereo camera is carried out with WTK and openGL library for a KUKA-6R manipulator and updated real robot path.

New Method of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Morita, Masahiko;Shigeru, Uchikado;Yasuhiro, Osa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.4-41
    • /
    • 2002
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. Here we consider two coordinate systems, the world coordinate system and the camera coordinate one and we use a pinhole camera model as the camera one. First of all, the essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. And these plays an important role in designing visual servoing in the later chapters. Statement of the problem is giver. Provided two a priori...

  • PDF

Real-Time Control of a SCARA Robot by Visual Servoing with the Stereo Vision

  • S. H. Han;Lee, M. H.;K. Son;Lee, M. C.;Park, J. W.;Lee, J. M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.238-243
    • /
    • 1998
  • This paper presents a new approach to visual servoing with the stereo vision. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method fur a SCARA robot.

  • PDF

A Study on Feature-Based Visual Servoing Control of Robot System by Utilizing Redundant Feature

  • Han, Sung-Hyun;Hideki Hashimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.762-769
    • /
    • 2002
  • This paper presents how effective it is to use many features for improving the speed and accuracy of visual servo systems. Some rank conditions which relate the image Jacobian to the control performance are derived. The focus is to describe that the accuracy of the camera position control in the world coordinate system is increased by utilizing redundant features in this paper. It is also proven that the accuracy is improved by increasing the number of features involved. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm robot manipulator made by Samsung Electronic Co. Ltd..

Survey on Visual Navigation Technology for Unmanned Systems (무인 시스템의 자율 주행을 위한 영상기반 항법기술 동향)

  • Kim, Hyoun-Jin;Seo, Hoseong;Kim, Pyojin;Lee, Chung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • This paper surveys vision based autonomous navigation technologies for unmanned systems. Main branches of visual navigation technologies are visual servoing, visual odometry, and visual simultaneous localization and mapping (SLAM). Visual servoing provides velocity input which guides mobile system to desired pose. This input velocity is calculated from feature difference between desired image and acquired image. Visual odometry is the technology that estimates the relative pose between frames of consecutive image. This can improve the accuracy when compared with the exisiting dead-reckoning methods. Visual SLAM aims for constructing map of unknown environment and determining mobile system's location simultaneously, which is essential for operation of unmanned systems in unknown environments. The trend of visual navigation is grasped by examining foreign research cases related to visual navigation technology.

Underwater Docking of an AUV Using a Visual Servo Controller (비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.142-148
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time for specific underwater works, such as repeated jobs at sea bed. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera mounted at the nose center of the AUV. To make the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and derives a state equation for the visual servoing AUV. This paper proposes a discrete-time MIMO controller minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servoing AUV, simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

  • PDF

A Study on Visual Feedback Control of Industrial Articulated Robot

  • Shim, Byoung-Kyun;Lee, Woo-Song;Park, In-Man;hwang, Won-Jun;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presented how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.