• Title/Summary/Keyword: visual identification

Search Result 303, Processing Time 0.024 seconds

Radiation Oncology Digital Image Chart 8nd Digital Radiotherapv Record System at Samsung Medical Center (디지털 화상 병력 시스템과 디지털 방사선치료 기록 시스템의 개발과 사용 경험)

  • Huh Seung Jae;Ahn Yong Chan;Lim Do Hoon;Cho Chung Keun;Kim Dae Yong;Yeo Inhwan;Kim Moon Kyung;Chang Seung Hee;Park Suk Won
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2000
  • Background :The authors have developed a Digital image chart(DIC) and digital Radiotherapy Record System (DRRS). We have evaluated the DIC and DRRS for reliability, usefulness, ease of use, and efficiency. Materials and Methods :The basic design of the DIC and DRRS was to build an digital image database of radiation therapy Patient records for a more efficient and timely flow of critical image information throughout the department. This system is a submit of comprehensive radiation oncology management system (C-ROMS) and composed of a picture archiving and communication system (PACS), a radiotherapy information database, and a radiotherapy imaging database. The DIC and DRRS were programmed using Delphi under a Windows 95 environment and is capable of displaying the digital images of patients identification photos, simulation films, radiotherapy setup, diagnostic radiology images, gross lesion Photos, and radiotherapy Planning isodose charts with beam arrangements. Twenty-three clients in the department are connected by Ethernet (10 Mbps) to the central image server (Sun Ultra-sparc 1 workstation). Results :From the introduction of this system in February 1998 through December 1999, we have accumulated a total of 15,732 individual images for 2,556 patients. We can organize radiation therapy in a 'paperless' environment in 120 patients with breast cancer. Using this system, we have succeeded in the prompt, accurate, and simultaneous access to patient care information from multiple locations throughout the department. This coordination has resulted in improved operational efficiency within the department. Conclusion :The authors believe that the DIC and DRRS has contributed to the improvement of radiation oncology department efficacy as well as to time and resource savings by providing necessary visual information throughout the department conveniently and simultaneously. As a result, we can also achieve the 'paperless' and 'filmless' practice of radiation oncology with this system.

  • PDF

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.