• Title/Summary/Keyword: visual analytics

Search Result 39, Processing Time 0.02 seconds

Introduction to Visual Analytics Research (비주얼 애널리틱스 연구 소개)

  • Oh, Yousang;Lee, Chunggi;Oh, Juyoung;Yang, Jihyeon;Kwag, Heena;Moon, Seongwoo;Park, Sohwan;Ko, Sungahn
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.5
    • /
    • pp.27-36
    • /
    • 2016
  • As big data become more complex than ever, there has been a need for various techniques and approaches to better analyze and explore such big data. A research discipline of visual analytics has been proposed to help users' visual data analysis and decision-making. Since 2006 when the first symposium of visual analytics was held, the visual analytics research has become popular as the advanced technology in computer graphics, data mining, and human-computer interaction has been incorporated in visual analytics. In this work we introduce the visual analytics research by reviewing and surveying the papers published in IEEE VAST 2015 in terms of data and visualization techniques to help domestics researchers' understanding on visual analytics.

Data Visualization and Visual Data Analytics in ITSM

  • Donia Y. Badawood
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.68-76
    • /
    • 2023
  • Nowadays, the power of data analytics in general and visual data analytics, in particular, have been proven to be an important area that would help development in any domain. Many well-known IT services best practices have touched on the importance of data analytics and visualization and what it can offer to information technology service management. Yet, little research exists that summarises what is already there and what can be done to utilise further the power of data analytics and visualization in this domain. This paper is divided into two main parts. First, a number of IT service management tools have been summarised with a focus on the data analytics and visualization features in each of them. Second, interviews with five senior IT managers have been conducted to further understand the usage of these features in their organisations and the barriers to fully benefit from them. It was found that the main barriers include a lack of good understanding of some visualization design principles, poor data quality, and limited application of the technology and shortage in data analytics and visualization expertise.

Relations between Reputation and Social Media Marketing Communication in Cryptocurrency Markets: Visual Analytics using Tableau

  • Park, Sejung;Park, Han Woo
    • International Journal of Contents
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.

Machine Learning Algorithm Accuracy for Code-Switching Analytics in Detecting Mood

  • Latib, Latifah Abd;Subramaniam, Hema;Ramli, Siti Khadijah;Ali, Affezah;Yulia, Astri;Shahdan, Tengku Shahrom Tengku;Zulkefly, Nor Sheereen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.334-342
    • /
    • 2022
  • Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.

A Case Study on Job Competence Evaluation for the A Course Based on NCS Using VA(Visual Analytics) (VA를 활용한 NCS 기반 교과목의 직무능력평가 사례 연구)

  • Choi, seok-hyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.369-370
    • /
    • 2017
  • 본 연구는 VA(Visual Analytics: 시각적 분석방법)을 활용하여 NCS 기반 교과목 운영에 따른 직무능력평가의 적합성 여부를 밝히고 수행준거별 직무능력 평가 유형의 분석 자료를 시각적으로 제시하고자 하였다.

  • PDF

Information Requirements for Model-based Monitoring of Construction via Emerging Big Visual Data and BIM

  • Han, Kevin K.;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.317-320
    • /
    • 2015
  • Documenting work-in-progress on construction sites using images captured with smartphones, point-and-shoot cameras, and Unmanned Aerial Vehicles (UAVs) has gained significant popularity among practitioners. The spatial and temporal density of these large-scale site image collections and the availability of 4D Building Information Models (BIM) provide a unique opportunity to develop BIM-driven visual analytics that can quickly and easily detect and visualize construction progress deviations. Building on these emerging sources of information this paper presents a pipeline for model-driven visual analytics of construction progress. It particularly focuses on the following key steps: 1) capturing, transferring, and storing images; 2) BIM-driven analytics to identify performance deviations, and 3) visualizations that enable root-cause assessments on performance deviations. The information requirements, and the challenges and opportunities for improvements in data collection, plan preparations, progress deviation analysis particularly under limited visibility, and transforming identified deviations into performance metrics to enable root-cause assessments are discussed using several real world case studies.

  • PDF

Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation (Seasonal-Trend Decomposition과 시계열 상관관계 분석을 통한 비정상 이벤트 탐지 시각적 분석 시스템)

  • Yeon, Hanbyul;Jang, Yun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1066-1074
    • /
    • 2014
  • In this paper, we present a visual analytics system that uses serial-correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial-correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the 'Gyeongju Mauna Resort collapse' and the 'Jindo-ferry sinking'.

Visual Analytics Approach for Performance Improvement of predicting youth physical growth model (청소년 신체 성장 예측 모델의 성능 향상을 위한 시각적 분석 방법)

  • Yeon, Hanbyul;Pi, Mingyu;Seo, Seongbum;Ha, Seoho;Oh, Byungjun;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • Previous visual analytics researches has focused on reducing the uncertainty of predicted results using a variety of interactive visual data exploration techniques. The main purpose of the interactive search technique is to reduce the quality difference of the predicted results according to the level of the decision maker by understanding the relationship between the variables and choosing the appropriate model to predict the unknown variables. However, it is difficult to create a predictive model which forecast time series data whose overall trends is unknown such as youth physical growth data. In this paper, we pro pose a novel predictive analysis technique to forecast the physical growth value in small pieces of time series data with un certain trends. This model estimates the distribution of data at a particular point in time. We also propose a visual analytics system that minimizes the possible uncertainties in predictive modeling process.

Visual Analytics using Topic Composition for Predicting Event Flow (토픽의 조합으로 이벤트 흐름을 예측하기 위한 시각적 분석 시스템)

  • Yeon, Hanbyul;Kim, Seokyeon;Jang, Yun
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.768-773
    • /
    • 2015
  • Emergence events are the cause of much economic damage. In order to minimize the damage that these events cause, it must be possible to predict what will happen in the future. Accordingly, many researchers have focused on real-time monitoring, detecting events, and investigating events. In addition, there have also been many studies on predictive analysis for forecasting of future trends. However, most studies provide future tendency per event without contextual compositive analysis. In this paper, we present a predictive visual analytics system using topic composition to provide future trends per event. We first extract abnormal topics from social media data to find interesting and unexpected events. We then search for similar emergence patterns in the past. Relevant topics in the past are provided by news media data. Finally, the user combines the relevant topics and a new context is created for contextual prediction. In a case study, we demonstrate our visual analytics system with two different cases and validate our system with possible predictive story lines.

Visual Analysis of Deep Q-network

  • Seng, Dewen;Zhang, Jiaming;Shi, Xiaoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.853-873
    • /
    • 2021
  • In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.