• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.024 seconds

A Visitor Study of The Exhibition of Using Big Data Analysis which reflects viewing experiences

  • Kang, Ji-Su;Rhee, Bo-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • This study aims to analyze the images of Instagram posts and to draw implcations regarding the exhibition of . This study collects and crawl 24,295 images from Instagram posts as a dataset. We use the Google Cloud Vision API for labeling the images and a total of 212,567 clusters of labels are finally classified into 9 categories using Word2Vec. The categories of museum spaces, photo zone, architecture category are dominant along with people category. In conclusion, visitors curate their experiences and memories of physical places and spaces while they are experiencing with the exhibition. This result reproves the results of previous studies which emphasize a sense of social presence and place making. The convergent approach of art management and art technology used in this study help museum professionals have an insight on big data based visitor research on a practical level.

Future Development Plans for the Next 60 Years of the Korean Meteorological Society (한국기상학회 향후 60년을 향한 미래 발전 방안)

  • Ki-Hong Min;June-Yi Lee;Seon-Ki Park;Kyung-Ja Ha;Yun Hong;Yongsoek Seo
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.297-306
    • /
    • 2023
  • Celebrating its 60th anniversary, this study suggests the future vision of the Korean Meteorological Society (KMS) for the next 60 years. The vision is "to advance atmospheric science and technology that contributes to human society as well as protect people from not only climate change risks but also weather, climate, and environmental disasters". Based on the suggestions from its members, this study proposes the KMS future development plan as follows. The first plan is to strengthen in leading the development and growth of atmospheric sciences in Korea, especially to improve weather, climate, and environment forecasts and to reduce uncertainty in future climate projections. The second is to enhance interaction not only among its members in academy, Korea Meteorological Administration and related organizations, meteorological industry, and science communicators but also with other related fields such as energy, water resources, agriculture, fishery, and forestry. The third is to enhance in nurturing young scientists by supporting domestic and international networks and training the state-of-the-art sciences, and to create opportunities for young scientists to advance into a wider field. The last is to expand its international activities for solving the challenges facing mankind, such as climate change risks and weather, climate, and environment disasters. The KMS should also continue the efforts to establish an integrative platform for leading fundamental and interdisciplinary research in weather, climate, and environment.

A Study on the Industrial Application of Image Recognition Technology (이미지 인식 기술의 산업 적용 동향 연구)

  • Song, Jaemin;Lee, Sae Bom;Park, Arum
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.86-96
    • /
    • 2020
  • Based on the use cases of image recognition technology, this study looked at how artificial intelligence plays a role in image recognition technology. Through image recognition technology, satellite images can be analyzed with artificial intelligence to reveal the calculation of oil storage tanks in certain countries. And image recognition technology makes it possible for searching images or products similar to images taken or downloaded by users, as well as arranging fruit yields, or detecting plant diseases. Based on deep learning and neural network algorithms, we can recognize people's age, gender, and mood, confirming that image recognition technology is being applied in various industries. In this study, we can look at the use cases of domestic and overseas image recognition technology, as well as see which methods are being applied to the industry. In addition, through this study, the direction of future research was presented, focusing on various successful cases in which image recognition technology was implemented and applied in various industries. At the conclusion, it can be considered that the direction in which domestic image recognition technology should move forward in the future.

A Time-temperature Indicator for A Vision Based-Detection System for Managing the Storage Temperature of Frozen Fish Products (냉동 수산물의 저장 온도 관리를 위한 Time-temperature Indicator와 비전 기반 Indicator 분석 프로그램 개발)

  • Jang, Myung-Kee;Hong, Chang-Wook;Choi, Jae-Hyuk;Kim, Koth-Bong-Woo-Ri;Choi, Jeong-Wook;Nam, Taek-Jeong;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.91-94
    • /
    • 2018
  • We develop a time-temperature indicator (TTI) that can determine whether thawing of fish and other fishery products has occurred during frozen storage. A polypropylene tube with an internal diameter of 3 mm was prepared and cut to a length of 14 to 20 mm. One end of the tube was thermally sealed and 0.1% acetic acid was injected into the other end; the tube was then frozen at $20^{\circ}C$. Then the open side of the frozen tube was blocked by sinking the tube into a 10% gelatin solution. The tube was attached to a polyvinyl packaging bag along blue litmus paper and the bag was put into a freezer at $-20^{\circ}C$. After freezing, the bag was removed to an ambient temperature of $20^{\circ}C$, and the time dependence of the color change of the litmus paper was observed. The color changed from blue to red, with the length of the red region increasing with time. Our TTI can be used as a part of a visible detection system and the detection program can conduct the elapsed time analysis on the length of the red region of the litmus paper indicating the degree of thawing. Thus, the TTI is a useful tool in the temperature management of frozen fish and fishery products.

Recognition of Events by Human Motion for Context-aware Computing (상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식)

  • Cui, Yao-Huan;Shin, Seong-Yoon;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.47-57
    • /
    • 2009
  • Event detection and recognition is an active and challenging topic recent in Computer Vision. This paper describes a new method for recognizing events caused by human motion from video sequences in an office environment. The proposed approach analyzes human motions using Motion History Image (MHI) sequences, and is invariant to body shapes. types or colors of clothes and positions of target objects. The proposed method has two advantages; one is thant the proposed method is less sensitive to illumination changes comparing with the method using color information of objects of interest, and the other is scale invariance comparing with the method using a prior knowledge like appearances or shapes of objects of interest. Combined with edge detection, geometrical characteristics of the human shape in the MHI sequences are considered as the features. An advantage of the proposed method is that the event detection framework is easy to extend by inserting the descriptions of events. In addition, the proposed method is the core technology for event detection systems based on context-aware computing as well as surveillance systems based on computer vision techniques.

Gaussian Blending: Improved 3D Gaussian Splatting for Model Light-Weighting and Deep Learning-Based Performance Enhancement

  • Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.23-32
    • /
    • 2024
  • NVS (Novel View Synthesis) is a field in computer vision that reconstructs new views of a scene from a set of input views. Real-time rendering and high performance are essential for NVS technology to be effectively utilized in various applications. Recently, 3D-GS (3D Gaussian Splatting) has gained popularity due to its faster training and inference times compared to those of NeRF (Neural Radiance Fields)-based methodologies. However, since 3D-GS reconstructs a 3D (Three-Dimensional) scene by splitting and cloning (Density Control) Gaussian points, the number of Gaussian points continuously increases, causing the model to become heavier as training progresses. To address this issue, we propose two methodologies: 1) Gaussian blending, an improved density control methodology that removes unnecessary Gaussian points, and 2) a performance enhancement methodology using a depth estimation model to minimize the loss in representation caused by the blending of Gaussian points. Experiments on the Tanks and Temples Dataset show that the proposed methodologies reduce the number of Gaussian points by up to 4% while maintaining performance.

Texture Classification Based on Gabor-like Feature (유사 가버 특징에 기반한 텍스쳐 분류)

  • Son, Ji-Hoon;Kim, Sung-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • Efficient texture representation is very important in computer vision fields. The performance of texture classification or/and segmentation can be improved based on efficient texture representation. Gabor filter is a representation method that has long history for texture representation based on multi-scale analysis. Gabor filter shows good performance in texture classification and segmentation but requires much processing time. In this paper, we propose new texture representation method that is also based on multi-scale analysis. The proposed representation can provide similar performance in texture classification but can reduce processing time against Gabor filter. Experimental results show good performance of our method.

Object detection within the region of interest based on gaze estimation (응시점 추정 기반 관심 영역 내 객체 탐지)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.117-122
    • /
    • 2023
  • Gaze estimation, which automatically recognizes where a user is currently staring, and object detection based on estimated gaze point, can be a more accurate and efficient way to understand human visual behavior. in this paper, we propose a method to detect the objects within the region of interest around the gaze point. Specifically, after estimating the 3D gaze point, a region of interest based on the estimated gaze point is created to ensure that object detection occurs only within the region of interest. In our experiments, we compared the performance of general object detection, and the proposed object detection based on region of interest, and found that the processing time per frame was 1.4ms and 1.1ms, respectively, indicating that the proposed method was faster in terms of processing speed.

Video smoke detection with block DNCNN and visual change image

  • Liu, Tong;Cheng, Jianghua;Yuan, Zhimin;Hua, Honghu;Zhao, Kangcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3712-3729
    • /
    • 2020
  • Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.

Vision-based full-field panorama generation by UAV using GPS data and feature points filtering

  • Guo, Yapeng;Xu, Yang;Niu, Haowei;Li, Zhonglong;E., Yuhui;Jiao, Xinghua;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.631-641
    • /
    • 2020
  • To meet the urgent requirements of safety surveillance from civil engineering management authorities, this study proposes a refined and efficient approach to generate full-field high-resolution panorama of construction sites using camera-amounted UAV (Unmanned Aerial Vehicle). GPS (Global Position System) information extraction for pre-registration, feature points filtering for efficient registration and optimal seaming line seeking for fusion are performed in sequence to form the full-field panorama generation framework. Advantages of the proposed method are as follows. First, GPS information can sort images for pre-registration, avoiding inefficient repeated pairwise calculations and matching. Second, the feature points are filtered according to the characteristics of the construction site images to reduce the amount of calculation. The proposed framework is validated on a road construction site and results demonstrate that it can generate an accurate and high-quality full-site panorama for the safety supervision in a much efficient manner.