• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.034 seconds

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF

A Study on Automatic Inspection Technology of Machinery Parts Based on Pattern Recognition (패턴인식에 의한 기계부품 자동검사기술에 관한 연구)

  • Cha, Bo-Nam;Roh, Chun-Su;Kang, Sung-Ki;Kim, Won-il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • This paper describes a new technology to develop the character recognition technology based on pattern recognition for non-contacting inspection optical lens slant or precision parts, and including external form state of lens or electronic parts for the performance verification, this development can achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data and standard reflex data mutually. Developed system to smallest 1 pixel unit though measuring is possible 1 pixel as $37{\mu}m{\times}37{\mu}m$ ($0.1369{\times}10-4mm^2$) the accuracy to $1.5{\times}10-4mm$ minutely measuring is possible performance verification and trust ability through an experiment prove.

Building Information-rich Maps for Intuitive Human Interface Using Networked Knowledge Base

  • Ryu, Jae-Kwan;Kanayama, Chie;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1887-1891
    • /
    • 2005
  • Despite significant advances in multimedia transferring technologies in various fields of robotics, it is sometimes quite difficult for the operator to fully understand the context of 3D remote environments from 2D image feedback. Particularly, in the remote control of mobile robots, the recognition of the object associated with the task is very important, because the operator has to control the robot safely in various situations not through trial and error. Therefore, it is necessary to provide the operator with 3D volumetric models of the object and object-related information as well such as locations, shape, size, material properties, and so on. Thus, in this paper, we propose a vision-based human interface system that provides an interactive, information-rich map through network-based information brokering. The system consists of an object recognition part, a 3D map building part, a networked knowledge base part, and a control part of the mobile robot.

  • PDF

YOLO based Optical Music Recognition and Virtual Reality Content Creation Method (YOLO 기반의 광학 음악 인식 기술 및 가상현실 콘텐츠 제작 방법)

  • Oh, Kyeongmin;Hong, Yoseop;Baek, Geonyeong;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.80-90
    • /
    • 2021
  • Using optical music recognition technology based on deep learning, we propose to apply the results derived to VR games. To detect the music objects in the music sheet, the deep learning model used YOLO v5, and Hough transform was employed to detect undetected objects, modifying the size of the staff. It analyzes and uses BPM, maximum number of combos, and musical notes in VR games using output result files, and prevents the backlog of notes through Object Pooling technology for resource management. In this paper, VR games can be produced with music elements derived from optical music recognition technology to expand the utilization of optical music recognition along with providing VR contents.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

Recognition of Occupants' Cold Discomfort-Related Actions for Energy-Efficient Buildings

  • Song, Kwonsik;Kang, Kyubyung;Min, Byung-Cheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.426-432
    • /
    • 2022
  • HVAC systems play a critical role in reducing energy consumption in buildings. Integrating occupants' thermal comfort evaluation into HVAC control strategies is believed to reduce building energy consumption while minimizing their thermal discomfort. Advanced technologies, such as visual sensors and deep learning, enable the recognition of occupants' discomfort-related actions, thus making it possible to estimate their thermal discomfort. Unfortunately, it remains unclear how accurate a deep learning-based classifier is to recognize occupants' discomfort-related actions in a working environment. Therefore, this research evaluates the classification performance of occupants' discomfort-related actions while sitting at a computer desk. To achieve this objective, this study collected RGB video data on nine college students' cold discomfort-related actions and then trained a deep learning-based classifier using the collected data. The classification results are threefold. First, the trained classifier has an average accuracy of 93.9% for classifying six cold discomfort-related actions. Second, each discomfort-related action is recognized with more than 85% accuracy. Third, classification errors are mostly observed among similar discomfort-related actions. These results indicate that using human action data will enable facility managers to estimate occupants' thermal discomfort and, in turn, adjust the operational settings of HVAC systems to improve the energy efficiency of buildings in conjunction with their thermal comfort levels.

  • PDF

Distance Measurement Using a Single Camera with a Rotating Mirror

  • Kim Hyongsuk;Lin Chun-Shin;Song Jaehong;Chae Heesung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.542-551
    • /
    • 2005
  • A new distance measurement method with the use of a single camera and a rotating mirror is presented. A camera in front of a rotating mirror acquires a sequence of reflected images, from which distance information is extracted. The distance measurement is based on the idea that the corresponding pixel of an object point at a longer distance moves at a higher speed in a sequence of images in this type of system setting. Distance measurement based on such pixel movement is investigated. Like many other image-based techniques, this presented technique requires matching corresponding points in two images. To alleviate such difficulty, two kinds of techniques of image tracking through the sequence of images and the utilization of multiple sets of image frames are described. Precision improvement is possible and is one attractive merit. The presented approach with a rotating mirror is especially suitable for such multiple measurements. The imprecision caused by the physical limit could be improved through making several measurements and taking an average. In this paper, mathematics necessary for implementing the technique is derived and presented. Also, the error sensitivities of related parameters are analyzed. Experimental results using the real camera-mirror setup are reported.

Combined Static and Dynamic Platform Calibration for an Aerial Multi-Camera System

  • Cui, Hong-Xia;Liu, Jia-Qi;Su, Guo-Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2689-2708
    • /
    • 2016
  • Multi-camera systems which integrate two or more low-cost digital cameras are adopted to reach higher ground coverage and improve the base-height ratio in low altitude remote sensing. To guarantee accurate multi-camera integration, the geometric relationship among cameras must be determined through platform calibration techniques. This paper proposed a combined two-step platform calibration method. In the first step, the static platform calibration was conducted based on the stable relative orientation constraint and convergent conditions among cameras in static environments. In the second step, a dynamic platform self-calibration approach was proposed based on not only tie points but also straight lines in order to correct the small change of the relative relationship among cameras during dynamic flight. Experiments based on the proposed two-step platform calibration method were carried out with terrestrial and aerial images from a multi-camera system combined with four consumer-grade digital cameras onboard an unmanned aerial vehicle. The experimental results have shown that the proposed platform calibration approach is able to compensate the varied relative relationship during flight, acquiring the mosaicing accuracy of virtual images smaller than 0.5pixel. The proposed approach can be extended for calibrating other low-cost multi-camera system without rigorously mechanical structure.

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.

Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks

  • FATHURAHMAN, Taufik;GUNAWAN, P.H.;PRAKASA, Esa;SUGIYAMA, Junji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.491-503
    • /
    • 2021
  • Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.