• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.032 seconds

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Development of Training Instruments on Visual functions using HMD type Display and Investigation of its Demand

  • Lee, Seong Jae;Oh, Se Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • We constructed 3-D images by HMD (Head Mount Display) type and polarization technique through which a training instrument of binocular function based on clinical vision therapy was developed and investigated its demand. To design the instrument that performs Test- Diagnosis - (Prescription) - Training - Treatment we provided a customized training method for the trainers using optical IT instruments of binocular test. Through the contents and the instruments of the vision therapy technology developed in this work we can replace the current vision test instruments to those costing 60% lower price in eye clinics and eye glasses shops. By replacing the existing vision test instruments it is possible to create a new market of the vision therapy in vision training instruments.

A real-time vision system for SMT automation

  • Hwang, Shin-Hwan;Kim, Dong-Sik;Yun, Il-Dong;Choi, Jin-Woo;Lee, Sang-Uk;Choi, Jong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.923-928
    • /
    • 1990
  • This paper describes the design and implementation of a real-time, high-precision vision system and its application to SMT(surface mounting technology) automation. The vision system employs a 32 bit MC68030 as a main processor, and consists of image acquisition unit. DSP56001 DSP based vision processor, and several algorithmically dedicated hardware modules. The image acquisition unit provides 512*480*8 bit image for high-precision vision tasks. The DSP vision processor and hardware modules, such as histogram extractor and feature extractor, are designed for a real-time excution of vision algorithms. Especially, the implementation of multi-processing architecture based on DSP vision processors allows us to employ more sophisticated and flexible vision algorithms for real-time operation. The developed vision system is combined with an Adept Robot system to form a complete SMD system. It has been found that the vision guided SMD assembly system is able to provide a satisfactory performance for SND automation.

  • PDF

Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment (구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식)

  • Kim, Donghoon;Lee, Donghwa;Myung, Hyun;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

Hierarchical Correlation-based Anomaly Detection for Vision-based Mask Filter Inspection in Mask Production Lines (마스크 생산 라인에서 영상 기반 마스크 필터 검사를 위한 계층적 상관관계 기반 이상 현상 탐지)

  • Oh, Gunhee;Lee, Hyojin;Lee, Heoncheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.277-283
    • /
    • 2021
  • This paper addresses the problem of vision-based mask filter inspection for mask production systems. Machine learning-based approaches can be considered to solve the problem, but they may not be applicable to mask filter inspection if normal and anomaly mask filter data are not sufficient. In such cases, handcrafted image processing methods have to be considered to solve the problem. In this paper, we propose a hierarchical correlation-based approach that combines handcrafted image processing methods to detect anomaly mask filters. The proposed approach combines image rotation, cropping and resizing, edge detection of mask filter parts, average blurring, and correlation-based decision. The proposed approach was tested and analyzed with real mask filters. The results showed that the proposed approach was able to successfully detect anomalies in mask filters.

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Investigation of the super-resolution methods for vision based structural measurement

  • Wu, Lijun;Cai, Zhouwei;Lin, Chenghao;Chen, Zhicong;Cheng, Shuying;Lin, Peijie
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.287-301
    • /
    • 2022
  • The machine-vision based structural displacement measurement methods are widely used due to its flexible deployment and non-contact measurement characteristics. The accuracy of vision measurement is directly related to the image resolution. In the field of computer vision, super-resolution reconstruction is an emerging method to improve image resolution. Particularly, the deep-learning based image super-resolution methods have shown great potential for improving image resolution and thus the machine-vision based measurement. In this article, we firstly review the latest progress of several deep learning based super-resolution models, together with the public benchmark datasets and the performance evaluation index. Secondly, we construct a binocular visual measurement platform to measure the distances of the adjacent corners on a chessboard that is universally used as a target when measuring the structure displacement via machine-vision based approaches. And then, several typical deep learning based super resolution algorithms are employed to improve the visual measurement performance. Experimental results show that super-resolution reconstruction technology can improve the accuracy of distance measurement of adjacent corners. According to the experimental results, one can find that the measurement accuracy improvement of the super resolution algorithms is not consistent with the existing quantitative performance evaluation index. Lastly, the current challenges and future trends of super resolution algorithms for visual measurement applications are pointed out.

An Interactive Aerobic Training System Using Vision and Multimedia Technologies

  • Chalidabhongse, Thanarat H.;Noichaiboon, Alongkot
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1191-1194
    • /
    • 2004
  • We describe the development of an interactive aerobic training system using vision-based motion capture and multimedia technology. Unlike the traditional one-way aerobic training on TV, the proposed system allows the virtual trainer to observe and interact with the user in real-time. The system is composed of a web camera connected to a PC watching the user moves. First, the animated character on the screen makes a move, and then instructs the user to follow its movement. The system applies a robust statistical background subtraction method to extract a silhouette of the moving user from the captured video. Subsequently, principal body parts of the extracted silhouette are located using model-based approach. The motion of these body parts is then analyzed and compared with the motion of the animated character. The system provides audio feedback to the user according to the result of the motion comparison. All the animation and video processing run in real-time on a PC-based system with consumer-type camera. This proposed system is a good example of applying vision algorithms and multimedia technology for intelligent interactive home entertainment systems.

  • PDF

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

Particle Filters using Gaussian Mixture Models for Vision-Based Navigation (영상 기반 항법을 위한 가우시안 혼합 모델 기반 파티클 필터)

  • Hong, Kyungwoo;Kim, Sungjoong;Bang, Hyochoong;Kim, Jin-Won;Seo, Ilwon;Pak, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.274-282
    • /
    • 2019
  • Vision-based navigation of unmaned aerial vehicle is a significant technology that can reinforce the vulnerability of the widely used GPS/INS integrated navigation system. However, the existing image matching algorithms are not suitable for matching the aerial image with the database. For the reason, this paper proposes particle filters using Gaussian mixture models to deal with matching between aerial image and database for vision-based navigation. The particle filters estimate the position of the aircraft by comparing the correspondences of aerial image and database under the assumption of Gaussian mixture model. Finally, Monte Carlo simulation is presented to demonstrate performance of the proposed method.