• Title/Summary/Keyword: vision/inertial sensor fusion

Search Result 12, Processing Time 0.164 seconds

Landmark Initialization for Unscented Kalman Filter Sensor Fusion in Monocular Camera Localization

  • Hartmann, Gabriel;Huang, Fay;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The determination of the pose of the imaging camera is a fundamental problem in computer vision. In the monocular case, difficulties in determining the scene scale and the limitation to bearing-only measurements increase the difficulty in estimating camera pose accurately. Many mobile phones now contain inertial measurement devices, which may lend some aid to the task of determining camera pose. In this study, by means of simulation and real-world experimentation, we explore an approach to monocular camera localization that incorporates both observations of the environment and measurements from accelerometers and gyroscopes. The unscented Kalman filter was implemented for this task. Our main contribution is a novel approach to landmark initialization in a Kalman filter; we characterize the tolerance to noise that this approach allows.

Improvement of Gesture Recognition using 2-stage HMM (2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구)

  • Jung, Hwon-Jae;Park, Hyeonjun;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.