• Title/Summary/Keyword: visible light emission

Search Result 135, Processing Time 0.025 seconds

Luminescence properties of InGaN/GaN green light-emitting diodes grown by using graded short-period superlattice structures

  • Cho, Il-Wook;Na, Hyeon Ji;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.279.2-279.2
    • /
    • 2016
  • InGaN/GaN multiple quantum wells (MQWs) have been attracted much attention as light-emitting diodes (LEDs) in the visible and UV regions. Particularly, quantum efficiency of green LEDs is decreased dramatically as approaching to the green wavelength (~500 nm). This low efficiency has been explained by quantum confined Stark effect (QCSE) induced by piezoelectric field caused from a large lattice mismatch between InGaN and GaN. To improve the quantum efficiency of green LED, several ways including epitaxial lateral overgrowth that reduces differences of lattice constant between GaN and sapphire substrates, and non-polar method that uses non- or semi-polar substrates to reduce QCSE were proposed. In this study, graded short-period InGaN/GaN superlattice (GSL) was grown below the 5-period InGaN/GaN MQWs. InGaN/GaN MQWs were grown on the patterned sapphire substrates by vertical-metal-organic chemical-vapor deposition system. Five-period InGaN/GaN MQWs without GSL structure (C-LED) were also grown to compare with an InGaN/GaN GSL sample. The luminescence properties of green InGaN/GaN LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensities of the GSL sample measured at 10 and 300 K increase about 1.2 and 2 times, respectively, compared to those of the C-LED sample. Furthermore, the PL decay of the GSL sample measured at 10 and 300 K becomes faster and slower than that of the C-LED sample, respectively. By inserting the GSL structures, the difference of lattice constant between GaN and sapphire substrates is reduced, resulting that the overlap between electron and hole wave functions is increased due to the reduced piezoelectric field and the reduction in dislocation density. As a results, the GSL sample exhibits the increased PL intensity and faster PL decay compared with those for the C-LED sample. These PL and TRPL results indicate that the green emission of InGaN/GaN LEDs can be improved by inserting the GSL structures.

  • PDF

Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution

  • Park, Sanghyun;Song, Byungkwan;Kong, Hoon Young;Byun, Jonghoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1169-1176
    • /
    • 2014
  • In this study, water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface with conventional and simple structured amino acid ligands: $\small{L}$-Glycine and $\small{L}$-Alanine. The ZnS:Mn-Gly and ZnS:Mn-Ala nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES, and FT-IR spectroscopy. The optical properties were measured by UV-Visible and photoluminescence (PL) spectroscopy. The PL spectra for the ZnS:Mn-Gly and ZnS:Mn-Ala showed broad emission peaks at 599 nm and 607 nm with PL efficiencies of 6.5% and 7.8%, respectively. The measured average particle size from the HR-TEM images were $6.4{\pm}0.8$ nm (ZnS:Mn-Gly) and $4.1{\pm}0.5$ nm (ZnS:Mn-Ala), which were also supported by Debye-Scherrer calculations. In addition, the degree of aggregation of the nanocrystals in aqueous solutions were measured by a hydrodynamic light scattering method, which showed formation of sub-micrometer size aggregates for both ZnS:Mn-Gly ($273{\pm}94$ nm) and ZnS:Mn-Ala ($233{\pm}34$ nm) in water due to the intermolecular attraction between the capping amino acids molecules. Finally, the cytotoxic effects of ZnS:Mn-Gly and ZnS:Mn-Ala nanocrsystals over the growth of wild type E. coli were investigated. As a result, no toxicity was shown for the ZnS:Mn-Gly nanocrystal in the colloidal concentration region from 1 ${\mu}g/mL$ to 1000 ${\mu}g/mL$, while ZnS:Mn-Ala showed significant toxicity at 100 ${\mu}g/mL$.

Fabrication of super hydrophilic TiO2 thin film by a liquid phase deposition (액상증착법에 의한 초친수 TiO2 박막 제조)

  • Jung, Hyun-Ho;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.227-231
    • /
    • 2010
  • Super hydrophilic $TiO_2$ thin films with photocatalytic property were successfully fabricated on a glass substrate by liquid phase deposition (LPD). The $TiO_2$ thin film formed nano particles on a surface at $70^{\circ}C$. As an immersion time in $TiF_4$ solution increased, the thickness of thin films gradually increased. $TiO_2$ thin film showed a water contact angel of below ca. $5^{\circ}$ and the transmittance of ca. 75~90 % in visible range. In addition, $TiO_2$ thin film showed the photocatalytic property to decompose methyl orange solution by the illumination of UV light. The surface morphologies, optical properties and contact angel of prepared thin films with a different immersion time were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.