• Title/Summary/Keyword: visible light communication

Search Result 337, Processing Time 0.031 seconds

Implementation of a Relay Module for Coverage Extension in Visible Light Communication (가시광 통신의 커버리지 확장을 위한 릴레이 모듈 구현)

  • Lee, Sang-Gwon;Lee, Jong-Sung;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.738-740
    • /
    • 2017
  • Visible light communication is a communication method using light, and it has advantage of ensuring security in a single space as compared with RF communication. However, in the area outside the visible line of the light, communication disconnection occurs. Therefore, this paper proposes a relay module to overcome the coverage extension and communication disconnection phenomenon of visible light communication. The proposed relay module transmits and receives data of visible light communication by sequentially transmitting data packets including target ID through adjacent visible light module. Through experimentation of data transmission, we confirmed the extension of the transmission range and the data reception in the area outside the line of sight.

  • PDF

Modeling Green-light Fiber Amplifiers for Visible-light Communication Systems

  • Khushik, Muhammad Hanif Ahmed Khan;Jiang, Chun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

The Analysis of Effects of LED Panel Position and Lighting Angle on Communication Channel Quality in Indoor Visible Light Communication Systems (살내 가시광 무선 통신 시스템에서 LED 패널 위치 및 발광 각도가 통신 채널 품질에 미치는 영향 분석)

  • Do, Tronghop;Hwang, Jun-Ho;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1108-1116
    • /
    • 2011
  • The visible light communication system that transmits data by controlling light emission of LED and receives data through photo detecter is considered as one of the strong candidates of the next generation wireless communication systems. The visible light communication provides both lighting and wireless communication wherever the LED lamps are installed. Due to the feature of visible light communication system, the communication is possible within the area that LED light reaches, and the communication quality depends on the light intensity received at the receiver. In this paper, we analyze the effects of LED panel position and lighting angel on communication channel quality in visible light communication systems. Through computer simulations, we prove that position of LED panel and light angle have a great impact on illuminance and SNR of the visible light communication systems.

Visible Light Communication LED driver For research to improve power (가시통신용 LED 드라이버 전력 효율 성능 향상을 위한 연구)

  • Kwon, Jae-hyun;Park, Keon-jun;Kim, Hyo-jun;Choi, Gil-Sang;Kim, Young-kab
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.15-16
    • /
    • 2012
  • General lighting will be replaced into LED due to the high efficiency, low power consumption, long life than conventional light, moreover, since it is a basically semiconductor device that can convert the electric energy to visible light at a very high speed, using these characteristics can be performed communication modulation via the high-speed ON-OFF switching. Recently, visible light communication (VLC: Visible Light Communication) technology is received attention and there have been many researches. This paper is implemented media signal transmission by combining LED with VLC, a transmitter used the LED light-emitting device and receiver used an infrared sensor. In order to increase the efficiency of the communication system to improve the existing LED visible light communication driver of power conversion efficiency and thermal issues that is applied to the visible light communication in order to improve the speed of transmission media to research a new way of LED driver.

  • PDF

LED Illumination Infrastructure for Ubiquitous Society based on the Visible Light Communication (가시광통신 기반 u-Society 구현을 위한 LED 조명 인프라)

  • Jeon, Jeong-U
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.273-276
    • /
    • 2008
  • This article describes a LED illumination infrastructure for ubiquitous society based on the Visible Light Communication technology. The VLC is one of the advanced communication system using "Visible Light". The VLC system has a lot of advantageous features and can be used in various places for the next future generation. So, we analyzed ubiquitous service model based on the VLC system and some applications. And we renewed discussion about LED illumination infrastructure for u-Society.

  • PDF

A Study on Realization of Visible Light Communication System for Power Line Communication Using 8-bit Microcontroller

  • Yun, Ji-Hun;Hong, Geun-Bin;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.238-241
    • /
    • 2010
  • The purpose of this study is to solve the problems of radio frequency bandwidth frequency depletion, confusion possibilities, and security that are in current wireless communications systems, and to confirm the possibility of applying those solutions for the next generation network. To solve the problems of the current wireless communications system, a visible light communications system for power line communication (PLC) via 8-bit microcontroller is created and the capacity is analyzed. The exclusive PLC chip APLC-485MA, an 8-bit ATmega16 microcontroller, high brightness 5pi light emitting diodes (LEDs), and the LLS08-A1 visible light-receiving sensor were used for the transmitter and receiver. The performance was analyzed using a designed program and an oscilloscope. The voltage change was measured as a function of distance from 10-50 cm. Blue LEDs showed the best performance among the measured LED types, with 0.47 V of voltage loss, but for a distance over 50 cm, precise data was not easy to obtain due to the weak light. To overcome these types of problems, specific values such as the changing conditions and efficiency value relevant to the light emitting parts and the visible light-receiving sensor should be calculated, and continuous study and improvements should also be realized for better communication conditions.

A Study on the LED-based Media Transmission Mechanics VLC System Module and Efficiency (LED 조명 기반 미디어 전송기법 가시광통신 시스템 모듈 설계 및 효율 연구)

  • Lee, Jun-myung;Kwon, Jae-hyun;Choi, Jung-won;Park, Keon-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • In this paper, we had design the module of the LED-based media transmission mechanics visible light communication system. To implement the media transmission system through visible light communication transmitter, receiver module the using high brightness, we proposed visible light communication system to implement communication distance of up to a maximum transmitter-receiver distance using a variable PD sensor to the receiver and 1~12 the LED light-emitting device to the transmitter. It was increased efficiency of approximately 20% by measuring the performance during lens wearing or not wearing on the LED module to improve the efficiency of the media transmission system.

Estimation Algorithm of Receiver's Position and Angle Based on Tracking of Received Light Intensity for Indoor Visible Light Communication Systems (실내 가시광 무선 통신 시스템의 수신 광도 변화 추적 기반 단말기 위치 및 수신각 추정 알고리즘)

  • Hwang, Jun-Ho;Lee, Ji-Soo;Yoo, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.60-67
    • /
    • 2011
  • Visible light communication system transmits data by controlling light emission of LED and receives data through photo detecter, which is considered as one of strong candidates of next generation wireless communication systems. The transmission capacity of visible light communication system depends on light intensity emitted from LED, sensitivity of PD, distance between transmitter and receiver, angle of incidence at the receiver. In particular, the receiver's vertical and horizontal movement changes distance between transmitter and receiver and angle of incidence, which may degrades transmission capacity of system. In this paper, we propose an estimation algorithm of receiver's position and angle based on tracking of received light intensity for indoor visible light communication systems. The performance evaluation of proposed algorithm confirms that the estimation algorithm of receiver's position and angle is quite important for visible light communication system to improve its transmission capacity.

A Study About Fact Influence on Performance at Indoor Visible Light Communication (실내 가시광 통신 시스템에서 성능에 영향을 주는 요인에 관한 연구)

  • Yi, Chang-Woo;Choi, Deok-Jai;Kim, Han-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.1-8
    • /
    • 2013
  • Wireless Visible Light Communication is the technology that enables communication using LED illumination Infrastructure instead of existing illumination such as incandescent lamp or fluorescent light. Because VLC uses light for communication, it has no problem of frequency permission and is harmless to human body. It is also possible to check the communication through eye. So VLC can be used as a supplement to the Radio Frequency communication, Infrared in indoor environment. So far, researchers on the LED Visible light communication have focused on the increasing transmission speed, transmission distance, modulation method. However, there is few research of main factors that influence on system performance. System performance has been mainly predicted through simulation. In this paper, I recognized that these factors such as outside light noise, obstacle, LED panel position or emitted angle have a great impact on wireless communication system. So I experimented VLC system by changing distance and position to discover location suitable for BER regulation.

Realization of Non-carrier Visible Light Communication System based upon LED IT (LED IT 기반의 간편한 비캐리어 가시광 통신 시스템 구현)

  • Lim, Kyeong-Sun;Baang, Sung-Keun;Lee, Yong-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1117-1125
    • /
    • 2011
  • In this paper, as a study of the simple visible light communication(VLC) with LED light, the visible light communication system that are made up with the $3{\times}3$ white LED array for visible light transmission, various photodiodes for visible light reception, and a non-carrier NRZ-OOK modulation scheme is designed and implemented to have a 115.2 kbps data speed at 2.5 m distance between transmitter and receiver. For the performance analysis of the developed VLC system, the maximum distance between VLC transmitter and receiver on the conditions of various transmission speeds, the number of LED array, or the various kind of LED and photodiode is obtained, and various performances are analyzed by experiments.