• Title/Summary/Keyword: visible efficiency

Search Result 422, Processing Time 0.028 seconds

Low-temperature Synthesis of Graphene-CdLa2S4 Nanocomposite as Efficient Visible-light-active Photocatalysts

  • Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • We report the facile synthesis of graphene-$CdLa_2S_4$ composite through a facile solvothermal method at low temperature. The as-prepared products were characterized by X-ray diffraction (XRD) and by Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and BET analysis, revealing the uniform covering of the graphene nanosheet with $CdLa_2S_4$ nanocrystals. The as-prepared samples show a higher efficiency for the photocatalytic degradation of typical MB dye compared with P25 and $CdLa_2S_4$ bulk nanoparticles. The enhancement of visible-light-responsive photocatalytic properties by decolorization of Rh.B dye may be attributed to the following causes. Firstly, graphene nanosheet is capable of accepting, transporting and storing electrons, and thus retarding or hindering the recombination of the electrons with the holes remaining on the excited $CdLa_2S_4$ nanoparticles. Secondly, graphene nanosheet can increase the adsorption of pollutants. The final cause is that their extended light absorption range. This work not only offers a simple way to synthesize graphene-based composites via a one-step process at low temperature but also a path to obtain efficient functional materials for environmental purification and other applications.

Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film (N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석)

  • Park, Sang-Won;Nam, Soo-Kyung;Heo, Jae-Eun
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

Dimmable Spatial Intensity Modulation for Visible-light Communication: Capacity Analysis and Practical Design

  • Kim, Byung Wook;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.532-539
    • /
    • 2018
  • Multiple LED arrays can be utilized in visible-light communication (VLC) to improve communication efficiency, while maintaining smart illumination functionality through dimming control. This paper proposes a modulation scheme called "Spatial Intensity Modulation" (SIM), where the effective number of turned-on LEDs is employed for data modulation and dimming control in VLC systems. Unlike the conventional pulse-amplitude modulation (PAM), symbol intensity levels are not determined by the amplitude levels of a VLC signal from each LED, but by counting the number of turned-on LEDs, illuminating with a single amplitude level. Because the intensity of a SIM symbol and the target dimming level are determined solely in the spatial domain, the problems of conventional PAM-based VLC and related MIMO VLC schemes, such as unstable dimming control, non uniform illumination functionality, and burdens of channel prediction, can be solved. By varying the number and formation of turned-on LEDs around the target dimming level in time, the proposed SIM scheme guarantees homogeneous illumination over a target area. An analysis of the dimming capacity, which is the achievable communication rate under the target dimming level in VLC, is provided by deriving the turn-on probability to maximize the entropy of the SIM-based VLC system. In addition, a practical design of dimmable SIM scheme applying the multilevel inverse source coding (MISC) method is proposed. The simulation results under a range of parameters provide baseline data to verify the performance of the proposed dimmable SIM scheme and applications in real systems.

Photopolymerization efficiency of dental resin composites with new mixed photosensitizers (새로운 혼합형 광증감제를 사용한 치과용 복합수지의 중합효율에 관한 연구)

  • Sun, Gum-Ju;Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • Two diketones, 1-phenyl-1,2-propanedione(PD) and 2,3-butanedione (BD) were investigated as new visible light photosensitizers for a dental resin composite of bis-GMA in order to improve photopolymerization effect. And the photopolymerization efficiency of mixed photosensitizers, PD-CQ and DA-CQ, was studied. Photopolymerization effect of photosensitizers were compared with that of camphorquinone(CQ), the most widely used photosensitizer. The photopolymerization efficiency of bis-GMA containing the photosensitizer increased with irradiation time. The increase was in the order: BD < CQ < PD. The photopolymerization efficiency of this mixture was not so efficient as CQ or PD.

  • PDF

Calculation of the Quantum Efficiency of Phosphor Screens in CRTs and FL Tubes

  • Ozawa, Lyuji;Tian, Yakui
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.128-133
    • /
    • 2010
  • The quantum efficiencies of CRT and FL tubes that use a phosphor screen as transducer of invisible particles to light in visible spectrum wavelengths were calculated in this study. The phosphor screens in CRT tubes have quantum efficiencies greater than 3,000, which give the luminance of comfortable images on phosphor devices for the observation by the eyes. The established FL tubes have the amazing quantum efficiency of $3{\times}10^{10}$ photons per moving electron per FL tube, which allows the illumination of a $5{\times}5\;m^2$ room by three FL tubes, with heating at $40^{\circ}C$. Thus, FL tubes, including for backlighting of LCD displays, have a superior over other illumination sources.

Electroluminescent Devices Using a Polymer of Regulated Conjugation Length and a Polymer Blend

  • Zyung, Tae-Hyoung;Jung, Sang-Don
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.181-193
    • /
    • 1996
  • A blue light emitting device has been successfully fabricated using a polymer with regulated conjugation length containing trimethylsilyl substituted phenylenevinylene units. Electroluminescence from the device has an emission maximum at 470 nm. The device shows typical diode characteristics with operating voltage of 20 V and the light becomes visible at a current density of less than $0.5;mA/cm^2$. The electroluminescence spectrum is virtually identical with the photoluminescence spectrum, indicating that the radiation mechanisms are the same for both. A light emitting device using the blend of a large band gap polymer and a small band gap polymer was also fabricated. Light emission from the small band gap polymer shows much improved quantum efficiency, but there is no light emission from the large band gap polymer. Quantum efficiency of the blend increases up to about two orders of magnitude greater than that of the small band gap polymer with increasing proportion of the large band gap polymer. The improvement in quantum efficiency is interpreted in terms of exciton transfer and the hole blocking behaviour of the large band gap polymer. Finally, we have fabricated a patterned flexible light emitting device using the high quantum efficiency polymer blend system.

  • PDF

Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer (CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성)

  • Kim, So-Youn;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Optimization of Geometries and Optical properties in PDP Cells

  • Jung, Sung-Wook;Choi, Hye-Rim;Oh, Myung-Hwan;Kang, Jung-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.894-897
    • /
    • 2006
  • The detailed studies regarding to the front and rear panel geometries and optical properties of composed layers were needed to improve the luminance and efficiency. 3-dimensional optical code can be used to analyze the variation of geometries and the changing of optical properties. The visible light distributions and illuminance results were simulated depending on the bus electrode position, ITO geometries and optical properties of dielectric layer. As the ITO area was decreased and the bus electrode was located at the outer part of cell, the illumination was increased. And we could find quantification which is related between dielectric layer and visible light distribution of PDP cell.

  • PDF

Improvement of the Accuracy of Optical Simulation Using by the Multi-cube UV Source in PDP Cells (Multi-cube UV source 이용한 PDP에서 광학시뮬레이션의 정확성 개선에 관한 연구)

  • Kang, Jung-Won;Eom, Chul-Whan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-44
    • /
    • 2007
  • Optical simulation of the rear and front panel geometries were needed to improve the luminance and efficiency in PDP cells. The 3-dimensional optical code can be used to analyze the variation of geometries and changing of optical properties. In order to improve the accuracy of simulated results, a new UV source, called a multi-cubes UV source, was designed. To design the source, at first UV distribution was calculated with the plasma fluid code and then the UV distribution was transformed to the multi-cube structures in the optical code. Compared to the results from existing UV source, called a planar UV source, could be improved the accuracy of visible light distribution. Simulated results were also compared to the visible distribution measured with the ICCD in a real PDP cell.

  • PDF

Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

  • Feng, Xianghua;Ding, Shimin;Zhang, Lixian
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3691-3695
    • /
    • 2012
  • Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations resulte in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.