• Title/Summary/Keyword: visible efficiency

Search Result 424, Processing Time 0.021 seconds

The Application and Electrical, Optical Properties of $In_2O_3$: Sn Transparent Conducting Films (ITO투명도전막의 전기, 광학적 특성 및 그 응용)

  • Lee, Dong Hoon;Park, Ki Cheol;Park, Chang Bae;Kim, Ki Wan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.498-505
    • /
    • 1986
  • In2O3: Sn(ITO) transparent conducting films were fabricated by the electron beam evaporation method. The dependence of their electrical and optical properties on deposition conditions were examined. The optimum evaporation conditions were such that the deposition rate was 5-10\ulcornersec, oxygen partial pressure was 4x10**_4 torr, substate temperatudre was above 300\ulcorner, and SnO2 doping rate was 10 mol%. The values of sheet resistance and transmittance of the films in visible region fabricated under these optimum conditins were 12\ulcorner/ and 87-99%, respecively. And the energy conversion efficiency of the SIS solar cell fabricated using ITO was 9.16%. It is shown that the transparent conducting films can be applied to the TV camear pick-up tube and solar cell.

  • PDF

Optimization of Sonocatalytic Orange II Degradation on MoS2 Nanoparticles using Response Surface Methodology

  • Jiulong Li;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • In this study, MoS2 nanoparticles were synthesized and analyzed through powder X-ray diffraction, Raman, ultraviolet-visible, and X-ray photoelectron spectroscopies. The surface morphologies of the as-synthesized MoS2 nanoparticles were investigated through scanning and transmission electron microscopies. The sonocatalytic activity of the MoS2 nanoparticles toward Orange II removal was evaluated by utilizing a Box-Behnken design for response surface methodology in the experimental design. The sonocatalyst dosage, Orange II dye concentration, and ultrasound treatment time were optimized to be 0.49 g/L, 5 mg/L, and 150 min, respectively. The maximum efficiency of Orange II degradation on MoS2 nanoparticles was achieved, with a final average value of 82.93%. Further, the results of a kinetics study on sonocatalytic Orange II degradation demonstrated that the process fits well with a pseudo-first-order kinetic model.

Power and Offset Allocation for Spatial-Multiplexing MIMO System with Rate Adaptation for Optical Wireless Channels (다중 입출력 무선 광채널에서의 공간 다중화 기법의 적응적 전송을 위한 광출력과 오프셋 할당 기법)

  • Park, Ki-Hong;Ko, Young-Chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.8-18
    • /
    • 2011
  • Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless communication system is challenging due to the limited bandwidth of the optical sources. In this paper, we design the singular value decomposition (SVD)-based multiplexing multi-input multi-output (MIMO) system to support two data streams in optical wireless channels. In order to improve the spectral efficiency, the rate adaptation using multi-level pulse amplitude modulation (PAM) is applied according to the channel condition and we propose the method to allocate the optical power, the offset and the size of modulation scheme theoretically under the constraints of the nonnegativity of the modulated signals, the aggregate optical power and the bit error rate (BER) requirement. The simulation results show that the proposed allocation method gives the better performance than the method to allocate the optical power equally for each data stream.

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

Utilization of Element-doping Titania-impregnated Granular Activated Carbon in a Plug-flow System for Removal of BTEX

  • Jo, Wan-Kuen;Shin, Seung-Ho;Hwang, Eun-Song;Yang, Sung-Bong
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.177-188
    • /
    • 2010
  • The use of an activated carbon (AC) system alone has the limitation that the pollutants are not eliminated but only transferred to another phase with the consumed AC becoming hazardous waste itself. Therefore, the present study investigated the feasibility of using a combined system of granular AC (GAC) with S-doped visible-light-induced $TiO_2$ (GAC/S-doped $TiO_2$) to clean monocyclic aromatic hydrocarbons (MAHs) with concentrations at $\leq$ 3 mg $m^{-3}$, using a continuous air-flow reactor. This study conducted three different experiments: an adsorption test of pure GAC and GAC/S-doped $TiO_2$; a long-term adsorptional photocatalytic (AP) activity test of GAC/S-doped $TiO_2$; and an AP activity test of GAC/S-doped $TiO_2$ under different conditions. For the AP activity test, three parameters were evaluated: various weights of GAC/S-doped $TiO_2$ (0.9, 4.4, and 8.9 g); various flow rates (FRs) (0.5, 1 and 2 L $min^{-1}$); and various input concentrations (ICs) of the target MAHs (0.1, 1, 2 and 3 mg $m^{-3}$). The adsorption efficiencies were similar for the pure GAC and GAC/S-doped $TiO_2$ reactors, suggesting that S-doped $TiO_2$ particles on GAC surfaces do not significantly interfere with the adsorption capacity of GAC. Benzene exhibited a clear AP activity, whereas no other target MAHs did. In most cases, the AP efficiencies for the target MAHs did not significantly vary with an increase in weight, thereby suggesting that, under the weight range tested in this study, the weights or FRs are not important parameters for AP efficiency. However, ICs did influence the AP efficiencies.

An Optimization Strategy for Vector Spatial Data Transmission onover the Internet (인터넷을 통한 벡터 공간 데이타의 효율적 전송을 위한 최적화 기법)

  • Liang Chen;Chung-Ho Lee;Hae-Young Bae
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.273-285
    • /
    • 2003
  • Generally, vector spatial data, with richer information than raster spatial data enabledata, enables a mere flexible and effective manipulation of the data sets. However, one of challenges against the publication of vector spatial information on the Internet is the efficient transmission of the big and complex vector spatial datadata, which is both large and complex, across the narrow-bandwidth of the Internet. This paper proposes a new transmission method, namely, the Scale-Dependent Transmission method, with the purpose of improving the efficiency of vector spatial data transmission on the narrow-bandwidthacross the Internet. Simply put, its nam idea is “Transmit what can be seen””. Scale is regarded as a factor naturally associated with spatial features so that not all features are visible to users at a certain scale. With the aid of the Wavelet-Wavelet-based Map Generalization Algorithm, the proposed method filters out invisible features from spatial objects according to the display scale and then to transmit onlytransmits only the visible features as athe final answer for an individual operation. Experiments show that the response times ofan individual operation has been reducedoperations were substantially by the usage of reduced when using the proposed method.

Factor Analysis for Improvement of Convenience and Safety in the Interior Design of Subway Trains (지하철 차량 실내디자인의 편의성과 안전성 증진요소 분석)

  • Jin, Mi-Ja;Han, Suk-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.779-785
    • /
    • 2007
  • This study identifies visible/invisible factors and analyzes facilities, structure, and visible perceptive contents in the aspects of operation and efficiency with a focus on the interfaces between interior design of the subway and users. More specifically, it diagnoses the requirements and empirically presents improvements. As the interior design in the subway trains is fur the public reflecting the value, consciousness, and behaviors of users, it should be approached through the application of the concept of universal design that considers the potential needs and psychological satisfaction of users. In arranging the indoor of the vehicles, the conditions for the facilities should be specified through the interdisciplinary approach from professional fields including ergonomics and psychology, the path of flow should be induced through the use of space and the analysis of passengers' behaviors, an integrated planning should be re-established, and continuous evaluations of basic guidelines, manuals, and requirements should be made.

Synthesis of Cholesteric Liquid Crystal and Its Application as a Polarizing Component on the Optical Film (콜레스테릭 액정의 합성과 광학필름용 편광성분으로서의 응용)

  • Kim, Yong-Suk;Lee, Kwang-Yeon;Ahn, Cheol-Heung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.661-667
    • /
    • 2008
  • In this study, cholesteric liquid crystal (CLC) was synthesized and applied as a polarizing component on the optical film of back light units (BLU) for LCDs. After mixing CLC with nematic liquid crystal, this mixture was fulfilled in the module consisting of two films and then its amplifying efficiency and polarizing ability for a planarly emitted light were examined to apply as a BLU polarizer film for increasing the brightness of light. The properties of CLC compound were tested by UV/Visible spectroscopy and polarizing optical microscopy (POM). Flexible spacer was made by linear carboxylic acid group of cholesteric derivatives between cholesterol mesogen units for one-axis orientation in each layer. The CLC containing film could be used as a module to increase the ability of polarization and to enhance brightness of BLU and to widen wavelength range by stacking the films.

Analysis of the Effect on the Performance of Ceramic Metal Halide Lamp by the Loss of Elements that have been Filled in Arc Tube (아크튜브내의 구성물 손실이 세라믹 메탈 핼라이드 램프의 특성에 미치는 영향분석)

  • Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2446-2452
    • /
    • 2009
  • A Ceramic Metal-halide lamp is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The maximum visible efficacy of a Ceramic Metal Halide lamp, under the constant of a white light source, is predicted to be about 450lm/W. This is controlled principally by the chemical fill chosen for a particular lamp. Current these lamps achieve 130lm/W and these life time are the maximum 16,000[hr]. So factors of performance lower are necessary to improve lamp performance. In this paper, we analyzed factors of performance lower by accelerated deterioration test. The lamp was operated with short duration turn-on/turn-off procedure to enhance the effect due to electrode sputtering during lamp ignition. The tested lamp that was operated with a longer turn-on/off(20/20 minutes) showed blackening, changed distance between electrodes and lowered color rendering & color temperature by losses of Dy at 421.18nm, I at 511nm, T1 at 535nm and Na at 588nm compared with the new lamp.

Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst

  • Putri, Reza Audina;Safni, Safni;Jamarun, Novesar;Septiani, Upita;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • The present study investigated the photodegradation of synthetic organic dye; violet-3B, without and with the addition of C-N-codoped TiO2 catalyst using a visible halogen-lamp as a light source. The catalyst was synthesized by using a peroxo sol-gel method with free-organic solvent. The effects of initial dye concentration, catalyst dosage, and pH solution on the photodegradation of violet-3B were examined. The efficiency of the photodegradation process for violet-3B dye was higher at neutral to less acidic pH. The kinetics reaction rate of photodegradation of violet-3B dye with the addition of C-N-codoped TiO2 followed pseudo-first order kinetics represented by the Langmuir-Hinshelwood model, and increasing the initial concentration of dyes decreased rate constants of photodegradation. Photodegradation of 5 mg L-1 violet-3B dye achieved 96% color removal within 240 min of irradiation in the presence of C-N-codoped TiO2 catalyst, and approximately 44% TOC was removed as a result of the mineralization.