This study investigates the prediction of soil chemical properties (organic matter (OM), pH, Ca, Mg, K, Na, total acidity, cation exchange capacity (CEC)) on 688 Korean soil samples using the visible-near infrared reflectance (VIS-NIR) spectroscopy. Reflectance from the visible to near-infrared spectrum (350 to 2500 nm) was acquired using the ASD Field Spec Pro. A total of 688 soil samples from 168 soil profiles were collected from 2009 to 2011. The spectra were resampled to 10 nm spacing and converted to the 1st derivative of absorbance (log (1/R)), which was used for predicting soil chemical properties. Principal components analysis (PCA), partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil chemical properties. The regression rules model (Cubist) showed the best results among these, with lower error on the calibration data. For quantitatively determining OM, total acidity, CEC, a VIS-NIR spectroscopy could be used as a routine method if the estimation quality is more improved.
The objectives of this study were to examine the ability to predict soluble solid and firmness in intact apple based on the visible/near-infrared spectroscopic technique. Two cultivars of apples, Delicious and Gala, were handled, tested and analyzed. Reflectance spectra, Magness-Taylor (MT) Firmness, and soluble solids in apples were measured sequentially. Maximum and minimum diameters, height, and weight of apples were recorded before the MT firmness tests. Apple samples were divided in to a calibration set and a validation set. The method of partial least squares (PLS) analysis was used. a unique set of PLS loading vectors (factors) was development for soluble solid and firmness. The PLS model showed good relationship between predicted and measured soluble solids in intact apples in the wavelength range of 860∼1078 nm. However, the PLS analysis was not good enough to predict the apple firmness.
Jang, Hyeon Jun;Choi, Chang Hyun;Choi, Tae Hyun;Kim, Jong Hun;Kwon, Gi Hyeon;Oh, Seung Il;Kim, Hoon;Kim, Yong Joo
Korean Journal of Agricultural Science
/
v.43
no.5
/
pp.715-722
/
2016
Rapid determination of food quality is important in food distribution. In this study, the chemical properties of oats were analyzed using visible-near infrared (VIS-NIR) spectroscopy. The objective of this study was to develop and validate a predictive model of oat quality by VIS-NIR spectroscopy. A total of 200 oat samples were collected from domestic and import markets. Reflectance spectra, moisture, protein, fat, Fe, and K of oat samples were measured. Reflectance spectra were measured in the wavelength range of 400 - 2,500 nm at 2 nm intervals. The reflectance spectrum of an oat sample was measured after sample cell and reflectance plate spectrum measurement. Preprocessing methods such as normalization and $1^{st}$ and $2^{nd}$ derivations were used to minimize the spectroscopic noise. The partial-least-square (PLS) models were developed to predict chemical properties of oats using a commercial software package, Unscrambler. The PLS models showed the possibility to predict moisture, protein, and fat content of oat samples. The coefficient of determination ($R^2$) of moisture, protein, and fat was greater than 0.89. However, it was hard to predict Fe and K concentrations due to their low concentrations in the oat samples. The coefficient of determinations of Fe and K were 0.57 and 0.77, respectively. In future studies, the stability and practicability of these models should be improved by using a high accuracy spectrophotometer and by performing calibrations with a wider range of oat chemicals.
This study investigates the prediction of soil OM on Korean soils using the Visible-Near Infrared (Vis-NIR) spectroscopy. The ASD Field Spec Pro was used to acquire the reflectance of soil samples to visible to near-infrared radiation (350 to 2500 nm). A total of 503 soil samples from 61 Korean soil series were scanned using the instrument and OM was measured using the Walkley and Black method. For data analysis, the spectra were resampled from 500-2450 nm with 4 nm spacing and converted to the $1^{st}$ derivative of absorbance (log (1/R)). Partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil OM. Regression rules model estimates the target value by building conditional rules, and each rule contains a linear expression predicting OM from selected absorbance values. The regression rules model was shown to give a better prediction compared to PLSR. Although the prediction for Andisols had a larger error, soil order was not found to be useful in stratifying the prediction model. The stratification used by Cubist was mainly based on absorbance at wavelengths of 850 and 2320 nm, which corresponds to the organic absorption bands. These results showed that there could be more information on soil properties useful to classify or group OM data from Korean soils. In conclusion, this study shows it is possible to develop good prediction model of OM from Korean soils and provide data to reexamine the existing prediction models for more accurate prediction.
The objectives of this study were to examine the ability to predict soluble solid and firmness in intact apples based on the visible/near-infrared spectroscopic technique. Two cultivars of apples, Delicious and Gala, were handled, tested and analyzed separately. Reflectance spectra, Magness-Tayor (MT) firmness, and soluble solids in apples were measured sequentially. Maximum and minimum diameters, height, and weight of apples were recorded before the MT firmness tests. A spectrophotometer was used to collect reflectance spectra of intact apples over a wavelength range of 400 to 2, 498 nm. The W firmness tests were conducted using a standard 11.1mm (7/16 in.) MT probe mounted in an Instron universal testing machine. A digital refractormeter was used to measure soluble solid contents in the apples. Apple samples were divided into a calibration set and a prediction set. The calibration set was used during model development, and the prediction set was used to predict soluble solids and firmness from unknown spectra. The method of partial least square (PLS) analysis was used. An unique set of PLS loading vectors (factors) was developed for soluble solid content and firmness. The PLS model showed good correlations between predicted and measured soluble solids of intact apples in 860~1078 nm of the wavelengths. However, the PLS analysis was not good enough to predict the apple firmness.
The objective of this research was to develop model equations for measuring rice milling ratio by using visible / HIR spectroscopy. Twelve kinds of brown rice(n = 149) were milled to obtain various milling ratio ranged from 86% to 94%. Visible/NIR spectra were collected with a spectrophotometer with sample transport module. The reflectance and transmission spectra were measured in the range of 400~2, 500nm and 600~1, 400nm, respectively, with 2 nm intervals. Multiple linear regression(MLR), Partial least square (PLS), and Artificial neural network(ANN) were used to develop models. Model developed with reflectance spectra showed better prediction results then those with transmission spectra. The MLR model with six-wavelength obtained from first derivative spectra gave to the best results for measuring the rice milling ratio(SEP = 0.535, , $r^2$ = 0.980). The PLS model(SEP = 0.604, $r^2$= 0.976) and ANN model(SEP = 0.566, $r^2$= 0.978) also can be used to determine the rice milling ratio effectively.
Purpose: The purpose of this study was to non-destructively and quickly predict the capsaicinoid content of domestic red pepper powders from various areas of Korea using a pungency measurement system in combination with visible and near-infrared (VNIR) spectroscopic techniques. Methods: The reflectance spectra of 149 red pepper powder samples from 14 areas of Korea were obtained in the wavelength range of 450-950 nm and partial least squares regression (PLSR) models for the prediction of capsaicinoid content were developed using area models. Results: The determination coefficient of validation (RV2), standard error of prediction (SEP), and residual prediction deviation (RPD) for the capsaicinoid content prediction model for the Namyoungyang area were 0.985, ${\pm}2.17mg/100g$, and 7.94, respectively. Conclusions: These results show the possibility of VNIR spectroscopy combined with PLSR models in the non-destructive and facile prediction of capsaicinoid content of red pepper powders from Korea.
Extraction of waterline in tidal flat has been one of the main concerns in the remote sensing of coastal region. This study aimed to define the spectral characteristics of turbid water near the shoreline and to find the appropriate spectrum to delineate the waterline at the inter-tidal flat in the western coast of Korean Peninsula. Spectral reflectance curves were obtained by the field measurements under the diverse condition of water depth and turbidity at the study area in Kyong-gi Bay. Spectroscopy measurements showed that reflectances of the exposed mudflat, shallow turbid water, and normal coastal water were significantly different by wavelength. Shallow water near the waterline showed diverse conditions of turbidity. Spectral reflectance tends to increase as turbidity increases, particularly at the visible and near infrared spectrum. At the middle infrared wavelength, tidal water showed very little reflectance regardless of the turbidity and water depth and was easily disting from the exposed tidal flat. The exact waterline between exposed tidal flat and seawater should be extracted from the image data obtained at the middle infrared wavelength.
William R.Windham;Park, Bosoon;Kurt C.Lawarece;Douglas P.Smith
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.3105-3105
/
2001
Ingests and fecal contamination on a poultry carcass is a food safety hazard due to potential microbiological contamination. A visible/near-infrared (NIR) spectrometer was used to discriminate among pure ingesta and fecal material, breast skin contaminated with ingesta or fecal material and uncontaminated breast skin. Birds were fed isocaloric diets formulated with either maize, mile, or wheat and soybean meal for protein requirements. Following completion of the feeding period (14 days), the birds were humanely processed and eviscerated to obtain ingests from the crop or proventriculus and feces from the duodenum, ceca, and colon portion of the digestive tract. Pure feces and ingesta, breast skin, and contaminated breast skin were scanned from 400 to 2500 nm and analyzed from 400 to 900 nm. Principal component analysis (PCA) of reflectance spectra was used to discriminate between contaminates and uncontaminated breast skin. Results indicate that visible (400 to 760 nm) and NIR 760-900 nm spectra can detect contaminates. From PCA analysis, key wavelengths were identified for discrimination of uncontaminated skin from contaminates based the evaluation of loadings weights.
Eung Seok Yi;Kyeong Ja Kim;Ik-Seon Hong;Suyeon Kim
Journal of Space Technology and Applications
/
v.3
no.2
/
pp.154-164
/
2023
In space exploration, spectroscopic observation is useful for understanding objects' composition and physical properties. There are various methods for analyzing spectral data, and there are differences depending on the object and the wavelength. This paper introduces a method for analyzing visible & nearinfrared (VNIR) spectral data, which is mainly applied in lunar exploration. The main analysis methods include false color ratio image processing, reflectance pattern analysis, integrated band depth (IBD) processing, and continuum removal as preprocessing before analysis. These spectroscopic analysis methods help to understand the mineral properties of the lunar surface in the VNIR region and can be applied to other celestial bodies such as Mars.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.