• 제목/요약/키워드: viscous heating

검색결과 48건 처리시간 0.018초

Citrate법을 이용한 수산화아파타이트 분말합성 및 소결특성 (Powder Synthesis and Sintering Behavior of Hydroxyapatite by Citrate Method)

  • 임병일;최세영;정형진;정형진;오영제
    • 한국세라믹학회지
    • /
    • 제33권9호
    • /
    • pp.1003-1011
    • /
    • 1996
  • Hydroxyapatite powder was synthesized by a citrate method, . Char-like precursor composed of Ca8(HPO4)2(PO4)4.5H2O (OCP) and CaCo3 was found via viscous resin-like intermediate by heating the mixed aqueous solution of Ca(NO3)2.4H2O(NH4)2HPO4 and citric acid. Resulted powder was transformed into hydroxyapatite phase by firing over 120$0^{\circ}C$-135$0^{\circ}C$ for 4 hr using the powder calcined at 90$0^{\circ}C$ for 10 hr composed of mostly single hydroxyapatite phase. The sintered densities increased with firing temperature up to 130$0^{\circ}C$ but the highest relative density was about 94% of theoritical value. indicating the presence of closed pores. The maximum 96 MPa of flexural strength was obtained at 120$0^{\circ}C$ firing but the flexural strength showed lower values over the above sintering condition. Vitro test was performed by immersing of two jointed specimens in SBF for seven days and adhesion was observed between two specimens.

  • PDF

열 잉크젯 프린트헤드의 채널간 간섭현상의 모델링 (Modeling of Crosstalk Behaviors in Thermal Inkjet Print Heads)

  • 이유섭;손동기;김민수;국건
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.141-150
    • /
    • 2007
  • This paper presents a lumped model to predict crosstalk characteristics of thermally driven inkjet print heads. Using the lumped R-C model, heating characteristics of the head are predicted to be in agreement with IR temperature measurements. The inter-channel crosstalk is simulated using the lumped R-L network. The values of viscous flow resistance, R and flow inertance, L of connecting channels are adjusted to accord with the 3-D numerical simulation results of three adjacent jets. The crosstalk behaviors of a back shooter head as well as a top shooter head have been investigated. Predictions of the proposed lumped model on the meniscus oscillations are consistent with numerical simulation results. Comparison of the lumped model with experimental results identifies that abnormal two-drop ejection phenomena are related to the increased meniscus oscillations because of the more severe crosstalk effects at higher printing speeds. The degree of crosstalk has been quantified using cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed and validated with the numerical simulations. Our model can be used as a design tool for a better design of thermal inkjet print heads to minimize crosstalk effects.

광섬유 2차 코팅다이 형상 변화에 따른 유리섬유 고속 코팅공정 영향성 해석연구 (Numerical Study of Secondary Coating Die Geometry Effects on High Speed Optical Glass Fiber Coating Process)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.12-18
    • /
    • 2019
  • The protective double layer polymer coatings on silica optical fibers are realized by wet-on-wet liquid coating process and they play an important role in final quality of mass produced optical fibers. This numerical study aims to analyze the effects of secondary coating die design parameters by employing two dimensional axisymmetric model of coating cup and coating die geometry and computational fluid dynamics simulations which include temperature dependent viscosity of polymer coating liquids and viscous dissipation heating. Under high speed fiber drawing conditions and pressurized coating liquid supply, the effects of converging die angle are investigated in order to appreciate the change of coating liquid flow patterns such as flow recirculation zone near coating die as well as primary and secondary coating layer thicknesses. The auxiliary coating die to converging coating die is also tested and the results find that this concept is advantageous in achieving stable double layer coatings on silica glass fiber.

저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동 (Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature)

  • 박덕훈;김봉철;김정주;박이순
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석 (Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator)

  • 문귀원;정인석;최정렬
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

제조조건에 따른 두부의 물성연구 (Rheological Studies of the Tofu upon the Processing Conditions)

  • 김학정;김병용;김명환
    • 한국식품과학회지
    • /
    • 제27권3호
    • /
    • pp.324-328
    • /
    • 1995
  • 두부의 제조공정(응고제 종류 및 양, 두유가열온도, 성형압력)에 따른 두부의 물성학적 성질의 변화를 파손강도와 응력완화현상을 이용하여 측정, 분석하였다. 각 응고제$(CaCl_2,\;MgCl_2,\;CaSO_4,\;GDL)$ 중에서 $CaCl_2$가 가장 뛰어난 파손강도를 보였으며 대부분 0.3%에서 최대치를 보였다. 가열온도는 $95^{\circ}C$에서 최대의 강도를 나타내었고 성형압력 15 kgf에서 모든 응고제를 이용한 두부는 성형되었으며, 일반적으로 성형압력이 높을수록 두부조직의 강도도 증가하였다. 각 제조조건에 따른 응력완화 실험에서는 초기응력 값이 파손강도의 결과와 일치하는 경향을 보였고 탄성성분과 점성성분 또한 파손강도의 변화와 같은 경향을 나타내었다. 응력완화실험을 통하여 측정한 두부조직의 물성을 수학적 모델에 적용하여 조직의 변화를 수치화하여 설명하였다.

  • PDF

Leuconostoc mesenteroides SM을 이용한 천년초(Opuntia humifusa) 열매 발효물의 물리·화학적 특성 (Physicochemical Characteristics of Cheonnyuncho Fruit (Opuntia humifusa) Fermented by Leuconostoc mesenteroides SM)

  • 박민주;이삼빈
    • 한국식품과학회지
    • /
    • 제45권4호
    • /
    • pp.434-440
    • /
    • 2013
  • 천년초 열매의 기능성 및 물성을 개선하기 위해서 Leuconostoc mesenteroides SM을 이용하여 천년초 열매 추출액의 젖산 발효를 수행하였다. 천년초 열매의 수분함량은 71.7%, 가식부 65%로 나타났으며, 점질물 함량은 1.8%로 측정되었다. 천년초 열매 추출액은 열처리 시간이 증가함에 따라 점조도와 점탄성이 감소하였고, 퍼짐성은 증가하는 경향을 나타내었다. 또한 잔존하는 미생물은 $80^{\circ}C$에서 30분 열처리에 의해 사멸 되었으며, 천년초 열매색소는 비교적 안정한 값을 유지하였다. 고분자 dextran 생성을 위해 sucrose 함량을 20%까지 첨가하여 발효한 결과, sucrose 첨가량과 발효 시간이 증가할수록 점질물 함량 및 점조도는 증가하였으며 퍼짐성은 감소하였다. Sucrose을 20% 첨가하여 3일 동안 발효한 발효물의 점질물 함량이 4.8%로 가장 높게 나타났으며, sucrose 전환율은 90%를 보였다. 특히 sodium citrate 3% 첨가 시 발효 3일째 발효물의 점질물은 7%까지 증가하였고, 점조도 역시 가장 높은 값을 나타내었다. 발효된 천년초 열매 추출액은 생성된 고분자 dextran에 의한 높은 점성 성질을 나타내면서, 가공적성 증진과 probiotics가 강화된 기능성 발효물로 전환될 수 있었다. 또한 기능성이 강화된 천년초 발효 소재는 기능성식품 및 가공식품의 소재로서의 활용이 기대된다.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.