• 제목/요약/키워드: viscous effects

검색결과 403건 처리시간 0.022초

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC

  • Yang, Hyunjai;Jung, Hyen-Cheol;Koo, WeonCheol
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.280-294
    • /
    • 2022
  • This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.

Generation of Solenoidal Modes in Turbulence Driven by Compressive Driving

  • Lim, Jeonghoon;Cho, Jungyeon;Yoon, Heesun
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.47.3-47.3
    • /
    • 2019
  • In this talk, we present numerical simulations of driven hydrodynamic and magnetohydrodynamic (MHD) turbulence with weak/strong imposed magnetic fields. We mainly focus on turbulence driven compressively (∇ × f = 0). Our main goal is to examine how magnetic fields play a role in generating solenoidal modes in compressive turbulence. From our simulation analysis, we find that solenoidal energy densities in hydrodynamic and weak magnetic field cases are generated up to ~ 30% of total ones. On the other hand, in the case of strong magnetic fields, solenoidal energy densities are excited up to ~ 70%. To interpret the results, we further analyze vorticity (w = ∇ × u) equation and find that magnetic fields directly create solenoidal motions, and magnetic tension is most effective in this sense. In hydrodynamic simulations, however, we find that viscous dissipation provides vorticity seeds at the very early stage and they are amplified via stretching process. Lastly, in weak magnetic fields cases, we find that solenoidal motions are created by the effects of magnetic fields, viscosity, and stretching in conjunction.

  • PDF

Influence of fluidelastic vibration frequency on predicting damping controlled instability using a quasi-steady model in a normal triangular tube array

  • Petr Eret
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1454-1459
    • /
    • 2024
  • Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with a pitch ratio of P/d = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an input parameter for the approach. The excellent agreement between the estimated stability thresholds and the equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple time delay analysis regarding flow convective and viscous effects.

댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구 (Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows)

  • 박일룡;정광효
    • 대한조선학회논문집
    • /
    • 제49권3호
    • /
    • pp.247-253
    • /
    • 2012
  • Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

턱관절 질환 치료 시 Sodium Hyaluronate의 효과 (EFFECT OF SODIUM HYALURONATE IN TREATING TEMPOROMANDIBULAR JOINT DISORDERS)

  • 문철웅;김수관
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권3호
    • /
    • pp.262-267
    • /
    • 2006
  • The term temporomandibular disorders is used to describe a group of conditions that involve the temporomandibular joint, masticatory muscles, and associated structures. Many modalities have been proposed for treating temporomandibular disorders, including medication, physical therapy, occlusal stabilization splints with or without manual repositioning, surgery, and arthrocentesis. Temporomandibular disorders are treated in a step-wise manner. Initially, conservative treatment is used. Depending on the response, more aggressive interventions may be necessary. This usually takes the form of arthrocentesis. Arthrocentesis is used in the treatment of not only acute, closed, and locked TMJs but also various other temporomandibular disorders. Recently, the intra-articular injection of sodium hyaluronate after arthrocentesis was shown to have long-term palliative effects on TMJ symptoms. Synovial fluid consists of plasma and glycosaminoglycan, including hyaluronic acid derived from synovial cells. Sodium hyaluronate, the sodium salt of hyaluronic acid, is a high-molecular-weight polysaccharide and a major component of synovial fluid. This highly viscous substance has analgesic properties, lubricant effects, and anti-inflammatory actions; it causes cartilage formation and plays a role in the nutrition of avascular parts of the disc and condylar cartilage. We conclude that the intra-articular injection of sodium hyaluronate is effective for treating temporomandibular disorders.

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.

저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 II : 나비어스톡스 방정식 (Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, II : Navier-Stokes Equations)

  • 이상현
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.123-130
    • /
    • 2008
  • 예조건화 나비어스톡스 방정식의 수렴 특성에 미치는 특성 조건수의 영향을 조사하였다. Choi와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우의 수렴 특성을 분석하였다. 공간차분을 위해 예조건화 Roe의 FDS 기법을 적용하였고, 시간적분을 위해 LU-SGS 기법을 적용하였다. 나비어스톡스 방정식의 수렴 특성은 특성 조건수에 크게 영향을 받으며, 최적의 특성 조건수가 존재하는 것을 보였다. 그리고 점성 유동의 최적 특성 조건수는 비점성 유동에 비해 큰 것으로 나타났다.

감물분말염료의 제논광에 의한 면직물의 발색효과 (Effect of Color Developing by Xenon Irradiation on Cotton Fabrics Dyed with Persimmon Extract Powder Dye)

  • 하수영;장정대
    • 한국염색가공학회지
    • /
    • 제25권1호
    • /
    • pp.56-64
    • /
    • 2013
  • In order to examine the availability of color developing for prepared persimmon extract powder dyes, purified and freeze-dried powder from immature persimmon fruit. The cotton fabrics dyed with 1% concentration of powder dyes. This study was conducted to examine into the color developing effects of the powder dye for the dyed cotton fabrics irradiated with xenon light. Powder dye is difficult to dissolve in water resulting in a colloidal and viscous solution. The problem of solubility in water was resolved by setting the dyeing conditions by wetting the dye with alcohol in advance and dissolving in warm water($50{\sim}60^{\circ}C$). Samples had no alkaline conversion in making process of powder dyes showed high color developing effect(${\Delta}E^*$, K/S). Samples showed decreased ${\Delta}E^*$, K/S with increased alkaline conversion in making process of powder dyes. Samples that had alkaline effects displayed easy early color developing to be advantageous in the process of natural pattern in art work.

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석 (PIV analysis of free surface effects on flow around a rotating propeller with varying water depth)

  • 백부근;이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.40-43
    • /
    • 2004
  • The effects of free surface on wake behind a rotating propeller were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique at tow different blade phases and ensemble-averaged to investigate the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is influenced by the propeller rotation and the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake are formed by the boundary layers developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. Tip vortices are generated periodically and the slipstream contracts in the near-wake region. The presence of free surface affects the wake structure largely, when the water depth is less than 0.6D. The free surface modifies the vortex structure, especially the tip and trailing vortices and flow structure in slipstreams of the propeller wake behind X/D = 0.3.

  • PDF