• 제목/요약/키워드: viscous diffusion

검색결과 74건 처리시간 0.03초

Flow Past Airfoil Moving Reciprocally in a Channel by Vortex Method

  • Ro Ki-Deok
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1248-1255
    • /
    • 2006
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

와사법을 이용한 타원판 후류의 전산 가시화 (Numerical Visualization of Three-Dimensional Flow Past an Elliptic Disk using Vortex Filament Method)

  • 안철오;이상환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2002
  • A study of three-dimensional unsteady incompressible flow past elliptic disk with aspect ratio 3 is presented. Numerical visualization using the vortex filament method was performed at Reynolds number of 20,000 on the basis of the minor diameter, the random walk method was used to calculate viscous diffusion effect. We suggest 3 stages about the wake development according to its structures, stability and motions and described the characteristics of each stages. The structure of the elliptic wake is more complicate and unstable than the wake behind a circular disk.

  • PDF

이산와법에 의한 2원주 주위의 유동장 가시화 (Visualization of flowfield around Two Circular Cylinders by a Discrete Vortex Method)

  • 노기덕;이영훈;손영태
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2002
  • The Flow patterns around two cylinders in various arrangements were studied by a discrete vortex method. The flow for the surface of each cylinder was represented by arranging bound vortices at adequate intervals. The viscous diffusion of fluid was represented by the random walk method. The vortex distributions, streaklines, timelines and velocity vectors around two cylinders were calculated for centre-to-centre pitch rations of P/D=1.5 and 2.5, attack angles of $\alpha=0^{\circ},\;30^{\circ},\;60^{\circ},\;and\;90^{\circ}$, correspond to the photographs by flow visualization and the flow intereference between two cylinders in var ious arrangements was clearly visualized by a numerical simulation.

  • PDF

CRYSTALLIZATION KINETICS OF Fe-Si-B-Cu-Nb AMORPHOUS RIBBONS

  • Zhou, S.X.;Ulvensoen, J.H.;Hoier, R.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.511-514
    • /
    • 1995
  • The crystallization kinetics of $Fe_{73.5}Si_{13.5}B_{9}Cu_{1}Nb_{3}$ amorphous alloy has been investigated using differential scanning calorimetry (DSC). The crystallization process had two stages, i.e. precipitation of the $\alpha$-Fe(Si) solid solution and the tetragonal borides. The isothermal transformation data of the amorphous alloy has been fitted successfully to the generalized Johnson-Mehl-Avrami equation. The mean time exponent, n, obtained is close to 2.5. The value of n=2.5 may be interpreted as being due to a diffusion-controlled transformation process with a constant nucleation rate, one likely transformation mode for the crystallization of metallic amorphous alloys. The activation energy of the overall crystallization process deduced from the time to 50% crystallization are about 81 kcal/mole. The value is of the same order as those estimated from viscous flow.

  • PDF

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

타원-혼합 2차모멘트 모형에 의한 강제와 자연대류가 복합된 수직 평판 난류유동의 예측 (Prediction of Combined Forced and Natural Turbulent Convection in a Vertical Plane Channel with an Elliptic-Blending Second Moment Closure)

  • 신종근;안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1265-1276
    • /
    • 2005
  • The elliptic conceptual second moment models for turbulent heat fluxes, which are proposed on the basis of elliptic-blending and elliptic-relaxation equations, are applied to calculate the combined forced and natural turbulent convection in a vertical plane channel. The models satisfy the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also have the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also the models are closely linked to the elliptic blending model which is used for the prediction of Reynolds stress. In order to calibrate the heat flux models, firstly, the distributions of mean temperature and scala flux in fully developed channel flow with constant wall difference temperature are solved by the present models. The buoyancy effect on the turbulent characteristics including the mean velocity and temperature, the Reynolds stress tensor, and the turbulent heat flux vector are examined. In the opposing flow, the turbulent transport is greatly enhanced with both the Reynolds stresses and the turbulent heat fluxes being remarkably increased; whereas, in the aiding flow, the opposite change is observed. The results of prediction are directly compared to the DNS to assess the performance of the model predictions and show that the behaviors of the turbulent heat transfer in the whole flow region are well captured by the present models.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

활성탄소섬유의 액상흡착 (Liquid Phase Adsorption of Activated Carbon Fibers)

  • 문동철;김창수;박일영;김미란;홍승수;이광호;이창기
    • 분석과학
    • /
    • 제13권5호
    • /
    • pp.573-583
    • /
    • 2000
  • 몇 가지 식물섬유, 합성섬유 및 혼합섬유를 원료로 하여 비표면적 차이가 나는 세가지 등급의 활성탄소섬유를 제조하고 입상활성탄을 대조흡착제로 하여 페놀 및 메틸렌블루의 액상흡착특성을 비교 검토하였다. 이들 흡착질 수용액의 활성탄소섬유에 대한 흡착등온선, 흡착속도 및 컬럼통액실험을 통하여 돌파점곡선을 측정하였다. 페놀 및 메틸렌블루의 흡착등온은 모두 type I을 나타내었으며 낮은 평형농도에서도 높은 흡착량을 나타내었다. 흡착질에 대한 활성탄소섬유의 흡착속도는 활성탄에 비하여 100배 이상 빠른 흡착속도를 보이며 유효확산계수도 20배 이상 높았다. 컬럼통액 실험결과 활성탄소섬유의 흡착용량은 활성탄에 비해 10배 이상으로 나타났다. 유해성 유기 오염물질 10종을 포함한 조제수를 자연여과방식으로 50 L씩 처리한 결과 2단에서 이들 유기성 오염물질을 완전히 제거하여 활성탄에 비하여 수처리 효율이 훨씬 높은 결과를 보였다.

  • PDF

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.

비압축성 유동 해석을 위한 입자법 수치 시뮬레이션 기술 개발 (Development of Numerical Simulation of Particle Method for Solving Incompressible Flow)

  • 이병혁;류민철;김용수;김영훈;박종천
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.8-14
    • /
    • 2007
  • A particle method recognized as one of gridless methods has been developed to investigate incompressible viscous flaw. The method is more feasible and effective than conventional grid methods for solving the flaw field with complicated boundary shapes or multiple bodies. The method is consists of particle interaction models representing pressure gradient, diffusion, incompressibility and the boundary conditions. In the present study, the models in case of various simulation condition were checked with the analytic solution, and applied to the two-dimensional Poiseuille flow in order to validate the developed method.