• Title/Summary/Keyword: viscous

Search Result 2,159, Processing Time 0.034 seconds

Studies on Thermal Oxidation of Soybean Oil -I. Changes in Some Chemical and Physical Properties of a Soybean Oil during Thermal Oxidation- (대두유의 가열산화중의 특성변화 -제 1 보 : 가열산화중의 대두유의 일부 화학적, 물리적 성질의 변화-)

  • Shin, Ae-Ja;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.257-264
    • /
    • 1982
  • In the present stud changes of some chemical and physical properties of a soybean oil, aerated at 120 ml/min through a porous gas distributor and oxidized at $45^{\circ}C{\sim}180^{\circ}C$, was investigated. The results of the study were as follows: The peroxide, thiobarbituric acid, and iodine value of the soybean oil which was aerated at 120 ml/min increased rapidly as oxidation temperature exceeded over $80^{\circ}C$. The acid value of the oil increased very rapidly as the oxidation temperature passed over $160^{\circ}C$. The content of the unsaturated fatty acid of the oil decreased considerably as the oxidation temperature exceeded over $80^{\circ}C$, whereas that of the saturated fatty acid did not change appreciably. This related well to the changes of the iodine value of the oil subjected to the same experimental conditions. The viscosity and refractive index of the oil increased rapidly as the oxidation temperature passed over $180^{\circ}C$. The following linear relationship hold for the viscosity and refractive index of the oil in the present study. $$V=Aexp({\frac{E}{RT}})$$ where V=viscosity(poise), A=constant, E=activation energy for viscous flow, R=gas constant, T=oxidation temperature$(^{\circ}K)$. The following relationship also hold for the viscosity and refractive index$({n^{20}}_D)$ of the oil at the present experimental conditions. $${n^{20}}_D=1.4614+7.333{\times}10^{-5}t+2.9612{\times}10^{-3}\;InV$$ where t=temperature$(^{\circ}C)$ at which the viscosity was measured.

  • PDF

Development of a Modular Magnetostrictive Transducer for Torsional Guided Wave Transduction in a Cylindrical Structure (원통형 구조물에서 비틀림 유도초음파 변환을 위한 모듈형 자기변형 트랜스듀서 개발)

  • Cho, Seung-Hyun;Park, Jae-Ha;Kwon, Hyu-Sang;Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.427-435
    • /
    • 2009
  • Cylindrical structures such as pipes and shafts are widely used in various industrial facilities. Recently, researches on magnetostrictive transduction of torsional waves have been actively reported for the nondestructive evaluation of those cylindrical structures. However, the existing magnetostrictive patch transducer has somewhat inconvenient and time.consuming process like patch bonding to a structure since it should employ a magnetostrictive patch having strong magnetostriction. To overcome these limitations of the existing transducer, in this work, we develop a novel modular magnetostrictive transducer to generate and measure torsional waves to inspect a cylindrical structure. The proposed transducer can be applied as viscous liquid coupling with shear couplant or dry coupling without coupling media instead of patch bonding to a structure. We describe a detailed structure of the modular transducer and conduct some experiments to verify its performance.

Numerical Simulation of Immiscible Water-Gas Simultaneous Flow in the absence of Capillary Force in a Single Fracture (단일절리에서 모세관압을 고려하지 않은 불혼합성 물과 가스의 동시거동 해석)

  • 한일영;서일원
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.69-81
    • /
    • 2001
  • The constitutive relation among capillary pressure, saturation and relative permeability should be predetermined in order to simulate immiscible water-gas flow in porous media. The relation between saturation and relative permeability becomes more important when the capillary force can be disregarded and viscous friction force governs the flow. In this study, a 2-dimensional finite difference numerical model was developed, in which the variation of viscosity with pressure and that of relative permeability with water saturation can be treated. Seven cases of parallel plate tests were performed in order to obtain the characteristic equation of relative permeability which would be used in. the developed numerical model. It was not possible, however, to match the curves of relative permeability from the plate tests with the existing emperical models. Consequently a logistic equation was proposed as a new emperical model. As this model was composed of the parameter involving aperture size, any aperture size of fracture can be applied to the model. For the purpose of verification, the characteristic equation of relative permeability was applied to the developed numerical model and the computed results were compared with those of plate test. As a result of application of numerical model, in order to check the field applicability, to single fracture surrounding an underground storage cavern, the simultaneous flow of water and propane gas was able to be simulated properly by the model.

  • PDF

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.

A 3D "In Vitro" Model to Study Hyaluronan Effect in Nasal Epithelial Cell Line Exposed to Double-Stranded RNA Poly(I:C)

  • Albano, Giusy Daniela;Bonanno, Anna;Giacomazza, Daniela;Cavalieri, Luca;Sammarco, Martina;Ingrassia, Eleonora;Gagliardo, Rosalia;Riccobono, Loredana;Moscato, Monica;Anzalone, Giulia;Montalbano, Angela Marina;Profita, Mirella
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.272-281
    • /
    • 2020
  • Environmental agents, including viral and bacterial infectious agents, are involved in the alteration of physicochemical and biological parameters in the nasal epithelium. Hyaluronan (HA) has an important role in the regulation of tissue healing properties. High molecular weight HA (HMW-HA) shows greater anti-inflammatory responses than medium molecular weight HA (MMW-HA) and low molecular weight HA (LMW-HA). We investigated the effect of HMW-HA, MMW-HA and LMW-HA on the regulation of physicochemical and biological parameters in an "in vitro" model that might mimic viral infections of the nasal epithelium. Human nasal epithelial cell line RPMI2650 was stimulated with double-stranded RNA (dsRNA) Poly(I:C) for 5 days in air-liquid-interface (ALI) culture (3D model of airway tissue). dsRNA Poly(I:C) treatment significantly decreased transepithelial electrical resistance (TEER) in the stratified nasal epithelium of RPMI2650 and increased pH values, rheological parameters (elastic G' and viscous G''), and Muc5AC and Muc5B production in the apical wash of ALI culture of RPMI2650 in comparison to untreated cells. RPMI2650 treated with dsRNA Poly(I:C) in the presence of HMW-HA showed lower pH values, Muc5AC and Muc5B production, and rheological parameters, as well as increased TEER values in ALI culture, compared to cells treated with Poly(I:C) alone or pretreated with LMW-HA and MMW-HA. Our 3D "in vitro" model of epithelium suggests that HMW-HA might be a coadjuvant in the pharmacological treatment of viral infections, allowing for the control of some physicochemical and biological properties affecting the epithelial barrier of the nose during infection.

Isolation and Characterization of a Novel Polysaccharide Producing Bacillus polymyxa A49 KCTC 4648P

  • Ahn, Sung-Gu;Suh, Hyun-Hyo;Lee, Chang-Ho;Moon, Seong-Hoon;Kim, Hee-Sik;Ahn, Keug-Hyun;Kwon, Gi-Seok;Oh, Hee-Mock;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1998
  • The strain A49, which produces a new type of extracellular polysaccharide was isolated from soil samples. From morphological, physiological and biochemical tests, the strain A49 was identified as a Bacillus polymyxa and named Bacillus polymyxa A49. Bacillus polymyxa A49 was found to produce a highly viscous extracellular polysaccharide when grown aerobically in a medium containing glucose as the sole source of carbon. The polysaccharide (A49 POL) showed a homogeneous pattern on gel permeation chromatography (GPC) and its molecular weight was estimated to be about 1.6 mega dalton (mDa). The FT-IR spectrum of A49-POL revealed typical characteristics of polysaccharides. As a result of investigations with HPLC and carbozole assay, A49-POL was found to consist of L-fucose, D-galactose, D-glucose, D-mannose, and D-glucuronic acid, with the molar ratio of these sugars being approximately 1:2:7:50:12. Rheological analysis of A49 POL revealed that it is pseudoplastic and has a higher apparent viscosity at dilute concentrations than does xanthan gum. The consistancy factor of A49 POL was found to be higher, and the flow index of A49 POL lower, than xanthan gum. Its apparent viscosity was comparatively unstable at various temperatures. the A49 POL showed the highest apparent viscosity at pH 3. When salts were added to A49 POL solution, the solution was compatible with up to 10% KCl, 35% NaCl, 55% $CaCl_2$, 55% $MgCl_2$, 55% $K_2HPO_4$, and 110% $Ca({NO_3})_2$, respectively.

  • PDF

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Model on the Contact Lens Movement from Eye-lid Blinking (순목 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Daesoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.145-159
    • /
    • 2004
  • A mathematical model and its computer solution program were proposed to analyze the motion of contact lenses which are being subject to lid-blinking. The equation was derived by incorporating an acceleration induced lid's force exerting on the contact lens, the viscous damping resistance in the tear layer beneath the lens and the sliding frictional force between the lid and the contact lens surface into the formulation of differential equation describing the vibration. The model predicts the time-dependent displacement from the equilibrium postion during/after the blinking. During the blinking, as the time for the completion of one cycle of blinking decreases the off-the-equilibrium displacement of contact lens increases while the decrease of diameter in the contact cause the opposite effect. It is found that lid pressure exerting on the lens cause an insignificant lens displacement from the equilibrium position. After blinking the frequency of damped oscillation of contact lens decreases as the diameter of lens increases, due to the incresed surface while the reduced blinking time does not cause a significant frequency change. This is because that driving force for the contact lens movement posterior to blinking is the capillary-induced force not the lid force.

  • PDF

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Effect of Additive, Storage Temperature and Time on the Texture Properties of Baikseolgi (첨가물, 저장온도 및 저장시간에 따른 백설기의 텍스쳐 특성)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.437-441
    • /
    • 1998
  • The effects of sucrose fatty acid ester (SE, 1% w/w) and glycerin (GL, 1% v/w) additions, storage temperature$(0,\;20\;and\;70^{\circ}C)$, and time $(0{\sim}6\;day)$ on texture properties, hardness(H), cohesiveness(O), chewiness(C) and rheological property(R) of Baikseolgi were studied. The H of Baikseolgi increased sharply in the early stage of storage at 0 and $20^{\circ}C$, while increased gently at $70^{\circ}C$ with increasing storage time. After 6 days of storage, the H of Baikseolgi at $20^{\circ}C$ had a little lower than that at $0^{\circ}C$. However, the H of Baikseolgi at $70^{\circ}C$ was 10.7% of that at $0^{\circ}C$. The addition of GL had greater effect on the reduction of H than that of SE. The H of control, SE and GL additions were 336, 216 and $$174\;g_f, respectively, after 6 days at $70^{\circ}C$. The O of Baikseolgi at $70^{\circ}C$ were higher than those at $0^{\circ}C$. The O of GL added Baikseolgi had the highest value and the second and the third were SE added and control, respectively. The O of Baikseolgi decreased with increasing storage time. The C of Baikseolgi of increased with increasing storage time, which had similar curve patterns to the H of Baikseolgi. Instantaneous stress and equilibrium stress of Baikseolgi decreased with increasing storage temperature. The affection of viscous element increased and that of elastic element decreased with increasing storage temperature.

  • PDF