• Title/Summary/Keyword: viscosity coefficient

Search Result 337, Processing Time 0.029 seconds

Prediction of Pumping Friction Resistance Coefficient in Pipe Influenced by Concrete Rheology Properties (콘크리트의 레올로지 특성에 따른 펌핑관내 마찰저항계수의 예측에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyoo;Kim, Jung-Chul;Lee, Kewn-Chu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for concrete pumping performance for the rapid construction of super-tall buildings. In this study, a quantitative evaluation of concrete fluid characteristics and surface friction resistance was performed, applying different concrete mix proportions and pumping conditions. To achieve this, we developed a temporary horizontal pumping evaluation system to measure pipe pressure and surface friction characteristics, and performed an experiment to investigate the relations between concrete rheology characteristics and friction resistance in pipe. The experiment found that in terms of the rheology characteristics, plastic viscosity was reduced remarkably after pumping. As well, high regression between the surface friction and pressure gradient was confirmed. This means that it is possible to evaluate the friction resistance between concrete and pipe by means of a pumping system that includes a frictional resistance testing pipe. In addition, high regression between the plastic viscosity of concrete after pumping and friction resistance coefficient was confirmed. Finally, it is considered that pumping pressure can be predicted using the friction resistance coefficient derived in this study, and it has high regression.

Transport Properties of Ar-Kr Mixtures: A Molecular Dynamics Simulation Study

  • Min, Sun-Hong;Son, Chang-Mo;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1689-1696
    • /
    • 2007
  • Equilibrium molecular dynamics (EMD) simulations are used to evaluate the transport coefficients of argonkrypton mixtures at two liquid states (state A: 94.4 K and 1 atm; state B: 135 K and 39.5 atm) via modified Green-Kubo formulas. The composition dependency of the volume at state A obeys close to the linear model for ideal liquid mixture, while that at state B differs from the linear model probably due to the high pressure. The radial distribution functions for the Ar-Kr mixture (x = 2/3) show a mixing effect: the first peak of g11 is higher than that of g(r) for pure Ar and the first peak of g22 is lower than that of g(r) for pure Kr. An exponential model of engineering correlation for diffusion coefficient (D) and shear viscosity (η) is superior to the simple linear model for ideal liquid mixtures. All three components of thermal conductivity (λpm, λtm, and λti) at state A and hence the total thermal conductivity decrease with the increase of x. At state B, the change in λtm is dominant over those in λpm and λti, and hence the total thermal conductivity decrease with the increase of x.

Effect of the rheological properties of aqueous xanthan gum solution on chemical absorption of carbon dioxide with diisopropanolamine

  • Son, Young-Sik;Park, Sang-Wook;Park, Dae-Won;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0~0.15 wt% containing diisopropanolamine (DIPA) of $0{\sim}2\;kmol/m^3$ in a flat-stirred vessel with an impeller of 0.05 m and agitation speed of 50 rpm at $25^{\circ}C$ and 101.3 kPa. The volumetric liquid-side mass transfer coefficient ($k_La$) of $CO_2$, which was obtained by the measured physical absorption rate, was correlated with the viscosity and the elastic behavior of XG solution such as Deborah number as an empirical formula. The chemical absorption rate of $CO_2$ ($R_A$), which was estimated by the film theory using the measured $k_La$ and the known kinetics of reaction between $CO_2$ and DIPA, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made $k_La$ and $R_A$ increased compared with Newtonian liquid based on the same viscosity of the solution.

Measurements of film thickness and temperature distribution in EHL point contact at high roll/slip ratios (높은 구름/미끄럼 비를 갖는 점 접촉 EHL 하에서의 온도분포와 유막 두께 분포의 측정)

  • Kim, Sung-Gi;Yagi, Kazuyuki;Nakahara, Tsunamitsu;Kyougoku, Keizi;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.293-298
    • /
    • 2001
  • In this paper, film thickness and temperature distribution are measured in EHL point contact at high roll/slip ratios. Infrared temperature mapping with two band pass filters, proposed by Ausherman (1976), is used to measure temperature distribution. And the optical interferometric method with two filters (red and green filters) is used to measure film thickness. Result of experiment showed that temperature rising at film and ball surface occurred very dramatically in Dimple zone. As slip velocity, roll/slip ratio and load increased, size of Dimple and temperature rising became more large. In addition, position and shape of Dimple were changed by roll/slip ratios, and increasing of Dimple size decreased traction coefficient. In short, it is appointed that the Dimple phenomenon be developed by the effect of viscosity wedge.

  • PDF

Study of Heat Transfer and Safety Evaluation for Heating Coils in the Fuel Tank of a Ship (선박 연료탱크 내 가온기의 열유동 및 안전성 평가에 관한 해석)

  • Moon, Jin-Gwon;Park, Jong-Chun;Kwon, Yoo-Hong;Yoo, Won-Seok;Ahn, Soo-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.22-30
    • /
    • 2010
  • The fuel tank of a ship is filled with heavy fuel oil (HFO) that has a very high viscosity. In order to inject the HFO into the engine easily, heating coils are usually installed inside the fuel tank to heat the HFO and lower its viscosity. Currently, several different types of heating coils are used, e.g., fin-type, bare-type, drum-type, and shell-and-tube-type. It is well known that the shell-and-tube-type heating coil has good performance and high efficiency. In this study, experiments were conducted to determine the heat transfer efficiencies of three different shell-and-tube-type heating coils. Heat transfer efficiency was evaluated by using FLUENT 6.3.26 software. Also, structural safety was assessed by using ANSYS.simulation software.

Optimization of Sugar Replacement with Date Syrup in Prebiotic Chocolate Milk Using Response Surface Methodology

  • Kazemalilou, Sahar;Alizadeh, Ainaz
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.449-455
    • /
    • 2017
  • Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.

Effect of elasticity of aqueous xanthan gum solution with 2-amino-methyl-1-propanol on chemical absorption of carbon dioxide

  • Park, Sang-Wook;Choi, Byoung-Sik;Song, Ki-Won;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0-0.15 wt% containing 2-amino-2-methyl-1-propanol (AMP) of $0-2\;kmol/m^3$ in a flat-stirred vessel with an impeller of 0.05m and agitation speed of 50rpm at $25^{\circ}C$ and 0.101 MPa. The volumetric liquid-side mass transfer coefficient ($k_La$) of $CO_2$, which was correlated with the viscosity and the elastic behavior of XG solution containing Deborah number as an empirical formula, was used to estimate the chemical absorption rate of $CO_2\;(R_A)$. $R_A$, which was estimated by mass transfer mechanism based on the film theory using the physicochemical properties and the kinetics of reaction between $CO_2$ and AMP, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made $R_A$ increased compared with Newtonian liquid based on the same viscosity of the solution.

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

A Study for the Viscous Flow of Sodium Chloride Through a Cuprophane Membrane

  • Jee Jong-Gi;Kwun Oh Cheun;Jhon Mu Shik;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 1982
  • For the study of transport phenomena of an aqueous NaCl solution through a cuprophane membrane, a new apparatus was constructed. The volumc flow rate Q, the permeability coefficient U, and the permeability constant K were measured or determined by using this apparatus. The experimental temperature range was 5 to $35^{\circ}C$, and the applied pressure increments were 10 to 40 psi. By assuming that the cuprophane membrane is composed of n parallel cylindrical capillaries of circular cross-section and that the flow of the solution through the capillaries follows the Poiseulle law, the mean radius r of the capillaries and the number n of the latter in the membrane were evaluated. By using a reasonable assumption concerning the radius ${\eta}'$ of the species diffusing through the membrane, it was concluded that the contribution of the diffusive flow to the total flow rate Q is less than 10%. Thus, the Q was treated as the rate due to the viscous flow, and the viscosity ${\eta}_m$ of the solution in the membrane phase was evaluted, and it was found that ηm is nearly equal to ${\eta}_b$, the bulk viscosity of the solution. From this fact, it was concluded that in the capillaries, no change occurs in the physical state of the NaCl solution. The value of ( = 4.27 kcal/mole) and ${\Delta}Sm^{\neq}$(4.28 eu) were obtained for the viscous flow. A possible explanation was given.

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium (다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.