• Title/Summary/Keyword: viscosity coefficient

Search Result 337, Processing Time 0.023 seconds

Laminar Film Condensation Model of Pure Steam in a Vertical Tube (수직관 내 순수 증기의 층류 액막 응축 모델)

  • Kim, Dong Eok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

A study on the frictional characteristics of wet-clutch friction materials in accordance with compositions (습식클러치용 마찰재의 조성별 마찰특성에 관한 연구)

  • 강전익;한홍구;권오관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.56-65
    • /
    • 1990
  • Wet-friction materials have been widely used for clutches and brakes of automotives over past several decades. In order to enhance its performance, its friction behaviour should be fully understood. It is, however, still not at hand and therefore an attempt was made to have some more understanding of friction behaviour of wet-friction materials. Measurements of coefficient of friction were made with the variation of lubricants, lub. temperature, sliding velocity, and contact pressure. In addition, the effects of both the viscosity of lubricants and the porosity of materials on the coefficient of friction were also investigated. It can be concluded that the coefficient of friction is decreased as the concentrations of the resin and inorganic fillers are increased, and it tends to decrease with the increase in the lubricant temperature and sliding velocity.

  • PDF

Effect of Guar Gum on Rheological Properties of Acorn Flour Dispersions

  • Yoo, Byoung-Seung;Shon, Kwang-Joon;Chang, Young-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Rheological properties of acorn flour-guar gum mixtures (4% w/w) at different guar gum concentrations (0, 0.2, 0.4, 0.6, and 0.8% w/w) were evaluated in steady and dynamic shear. The acorn flour-guar gum mixtures at $25^{\circ}C$ showed high shear-thinning flow behavior (n= 0.20-0.27). Consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) increased with the increase in guar gum concentration. Within the temperature range of $25-70^{\circ}C$, the {\eta}_{a,100}$ of mixtures obeyed the Arrhenius relationship with high determination coefficient ($R^2=\;0.974-0.994$). Activation energy values (5.37-6.77 kJ/mole) of acorn flour dispersions in the mixtures with guar gum (0.2-0.8%) were much lower than that (12.5 kJ/mole) of acorn flour dispersion (0% guar gum). Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) increased with the increase in guar gum concentration. Dynamic rheological data of 1n (G', G") versus ln frequency (w) of guar gum-acorn flour mixtures had positive slopes with G' greater than G" over most of the frequency range, indicating that they exhibited weak gel-like behavior.

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil (점도 변화에 따른 유류오염 모래의 역학적 특성)

  • Hong, Seung Seo;Bae, Gu-Jin;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.577-585
    • /
    • 2015
  • Contamination of soil due to an oil spill influences its subsequent behavior. An investigation was conducted to study the effect of oil viscosity on compaction characteristics, coefficient of permeability, and shear strength. Water permeability was also determined by using Kerosene, Engine oil, and Crude-oil as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. Direct shear test was conducted to investigate the effect of oil in the pore space in sandy ground. angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand.

Temperature Dependence of Self-Diffusion of THO in Copolymer Hydrogel Membrane as a Function of Gel Compositions

  • Soon Hong Yuk;Sang Il Jeon;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.104-108
    • /
    • 1984
  • The self-diffusion experiment of THO was performed across a series of copolymer hydrogel membranes at different temperatures. Copolymer hydrogel membranes were prepared by copolymerizing 2-hydroxyethyl methacrylate (HEMA) and 2-aminoethyl methacrylate (AEMA) in the presence of the solvent and the crosslinker, ethylene glycol dimethacrylate (EGDMA). By changing the crosslinker content and the ratio of HEMA and AEMA monomer, two series of copolymer hydrogel membranes were synthesized. The tagging material was THO and efflux of THO was counted on a Liquid Sc-intillation Counter. The experimental data show that the permeability decreases as the amount of EGDMA and the mole fraction of HEMA increase, and the permeability is proportional to the temperature. The partition coefficient shows a parallel trend with permeability. Using the relationship between viscosity and diffusivity, the viscosity of water within the membrane was obtained. According to the result, the viscosity of watler within the membrane has the same value with those of supercooling water. And we obtained the activation energy of THO for transport in the membrane by using Arrhenius plotting.

Effect of Aeration and Agitation Conditions on the Production of Glucoamylase with Aspergillus niger No. PFST-38

  • Oh, Sung-Hoon;O, Pyong-Su;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.292-297
    • /
    • 1993
  • Aspergillus niger No. PFST-38 was grown on complex media in 30L agitated fermentors at various aeration rates and stirrer speeds. We could correlate the mixing time as a function of the Reynolds number and the apparent viscosity, as follows. ${\theta}_M=2.95\;\NRe^{-0.52},\;{\theta}_M=1.88\;{\eta_a}^{0.57}$ Also, the effects of the apparent viscosity (${\theta}_a$), the impeller rotational speed (N), the air flow rate ($V_s$), and the mixing time (${\theta}_M$) on the oxygen transfer coefficient, $K_L a$ were determined experimentally, and equated as follows. $K_La=12.04N^{0.88}Vs^{0.71}{n_a}^{-0.83},\;K_La=30.2N^{0.88}Vs^{0.71}{\theta_M}^{-1.45}$ $K_La$ increased as the agitation speed and the air flow rate increased. The rate of $K_La$ increase was dependent more on the rotational speed of impeller than on the air flow rate. The glucoamylase production increased with the increase of the agitation speed upto at 500 rpm and increased with the increase of air flow rate upto at 1.0 vvm. The values calculated from the above equation confirmed that the experimental maximum production of glucoamylase was achieved when the $K_La$ and the apparent viscosity of the broth were $260\;hr^{-1}$ and 1800 cps, respectively.

  • PDF

Comparative Study to the Tribological Characteristics of Graphite Nano Lubricants after Thermal Degradation (그라파이트 나노윤활유의 열화 후 윤활 특성 비교 연구)

  • Lee, Jae-Keun;Lee, Chang-Gun;Hwang, Yu-Jin;Choi, Young-Min;Park, Min-Chan;Choi, Cheol;Oh, Je-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.190-195
    • /
    • 2008
  • Many researchers have tried to improve the tribological characteristics of lubricant by adding various nano particles in the base lubricant. But the reliability evaluation of the lubricants are rarely performed in its real operation condition. In this study, the physical property and the tribological characteristics of the graphite nano lubricant were evaluated and compared with raw lubricant after thermal degrading. In order to evaluate the tirbological characteristics, the disk-on-disk tribotester was adopted to measure the friction coefficient of the graphite nano lubricants. Also the temperature variations of friction surfaces were measured by the thermocouple installed on the fixed plate in the test chamber of the tribotester. The kinematic viscosity was measured using a capillary viscometer on the temperatures of 40, 60 and $80^{\circ}C$. The results showed that the graphite nano lubricant had lower friction coefficient and less wear on the friction surfaces than raw lubricant. After thermally degrading, the friction coefficients of graphite nano lubricant increased, but the friction coefficients after thermal degradation were still maintained lower than those of raw lubricant.

Ultrasonic Velocity and Absorption Measurements for poly (sodium 4-styrenesulfonate) and Water Solutions (Poly (sodium 4-styrenesulfonate)/ 물 이성분용액의 초음파 음속 및 흡수계수측정)

  • 배종림
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.497-502
    • /
    • 2004
  • Both ultrasonic velocity at 3 MHz and absorption coefficient in the frequency range of 0.2-2 MHz were measured for poly (sodium 4-styrenesulfonate) aqueous solution over the concentration range of 5 to 25 % by weight. Pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range of 10-90 ℃ and the high-a ultrasonic resonator method was used for the absorption coefficient measurement at 20 ℃. The velocity exhibited a maximum value at approximately 55. 59, 63. 67, and 71 ℃ in 25, 20. 15, 10. and 5 wt% solutions, respectively. The velocity increased with poly (sodium 4-styrenesulfonate) concentration at a given temperature. The concentrations dependences of the relaxation frequency and amplitude showed that the relaxation around 200 kHz is related to the structural fluctuations of polymer molecules, such as the segmental motions of the polymer chains and that around 1 MHz resulted from the proton transfer reaction of the oxygen sites of SO₃. Both the absorption and the shear viscosity increase with the Polymer concentration. but decrease with temperature.

Effect of drawbead process parameters on the drawing characteristics of sheet metals for automotive parts (자동차용 판재 성형시 드로우비드 공정인자별 인출특성에 대한 연구)

  • 김원태;이동활;강우순;서만석;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.140-143
    • /
    • 2003
  • The drawbead is an important part in sheet metal forming for automotive part and its effect is affected by various process parameters. Therefore in this study, drawbead friction test was performed at various process parameters - panels (cold rolled and galvanized sheet steel), lubricants (having three different viscosities), bead materials(steel, iron) and surface treatment of bead (Cr plating). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating, viscosity of lubricants, surface treatment of a bead and hardness of coated layer.

  • PDF