• Title/Summary/Keyword: viscosity(${\eta}$)

Search Result 100, Processing Time 0.021 seconds

An Experimental Study on the Characteristics of the Emulsion Viscosity (어멀젼의 점성특성에 관한 실험적 연구)

  • 지창헌
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 1991
  • The emulsion lubrication is expected to get the effects of cooling and lubrication in metal cutting. The purpose of this research was to investigate the lubrication characteristics of the emulsion in a region of the elastohydrodynamic lubrication by experiments using o/w type emulsion lubrication. With the line contact frictional experiment apparatus which is the model of a rolling mechanism, friction coefficient, and oil film thickness were measured. By analyzing these experimental data with the variables of emulsion concentration, load, and rolling velocity, the following results are obtained. Emulsion viscosity $\eta$ for the concentration and pressure can be calculated by the following equation $\eta=\eta_o e^{\alphap}\cdot e^{\beta \phi}$. Where $\beta = (-3.7242+\phi)/\phi, 5%\leq \phi \leq 15%$.

RHEOLOGIC STUDY ON THE VISCOELASTIC PROPERTIES OF FLOWABLE AND CONDENSABLE RESIN COMPOSITES (유동성 및 응축성 복합레진의 점탄성에 관한 유변학적 연구)

  • Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.359-370
    • /
    • 2000
  • The purpose of this investigation was to observe the viscoelastic properties of five commercial flowable(Aeliteflo, Flow it, Revolution, Tetric flow, Compoglass flow), three conventional hybrid(Z-100, Z-250, P-60) and two condensable(Synergy compact, SureFil) resin composites. A dynamic oscillatory shear test was done to evaluate the storage shear modulus (G'), loss shear modulus(G"), loss tangent(tan ${\delta}$) and complex viscosity(${\eta}^*$) of the resin composites as a function of frequency - dynamic frequency sweep test from 0.01 to 100 rad/s at $25^{\circ}C$ - by using Advanced Rheometric Expansion System(ARES). To investigate the effect on the viscosity of resin composites of filler volume fraction, the filler weight % and volume % were measured by means of Archimedes' principle using a pyknometer. The results were as follows 1. The complex viscosity ${\eta}^*$ of flowable resins was lower than that of hybrid resins and significant differences were observed between brands. The complex viscosity ${\eta}^*$ of condensable resins was higher than that of hybrid resins. The order of complex viscosity ${\eta}^*$ at ${\omega}$=10 rad/s was as follows, Surefil, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it, Revolution. The relative complex viscosity of flowable resins compared to Z-100 was 0.04~0.56 but Surefil was 30.4 times higher than that of Z-100. 2. The storage shear modulus G' and the loss shear modulus G" of flowable resins were lower than those of hybrid resins but those of condensable resins were higher. The patterns of the change of loss tangent, tan ${\delta}$, of resin composites with increasing frequency were significantly different between brands. The phase angles, ${\delta}$, ranged from $30.2{\sim}78.1^{\circ}$ at ${\omega}$=10 rad/s. 3. All composite resins represent pseudoplastic nature with increasing shear rate. 4. The complex shear modulus $G^*$ and the phase angle ${\delta}$ was represented by the frequency domain phasor form, $G^*({\omega})=G^*e^{i{\delta}}=G^*{\angle}{\delta}$. The locus of frequency domain phasor plots in a complex plane was a valuable method that represent the viscoelastic properties of composite resins. 5. There was no direct linear correlationship but a weak positive relation was observed between filler volume % or weight % and the viscosity of the resin composites.

  • PDF

Rheological Behavior of Sweet Potato Starch-Glucose Composites

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.417-420
    • /
    • 2008
  • Rheological properties of sweet potato starch (SPS)-glucose composites (5%, w/w) at different concentrations (0, 10, 20, and 30%, w/w) of glucose were investigated in steady and dynamic shear. The steady shear rheological properties of SPS-glucose composites were determined from rheological parameters for power law and Casson flow models. At $25^{\circ}C$ all the samples showed a pronounced shear-thinning behaviors (n=0.29-0.37) with high Casson yield stress. In general, the presence of glucose resulted in the decrease in consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$). Storage (G') and loss (G") moduli increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. Dynamic moduli (G', G", and ${\eta}*$) of the SPS-glucose composites at higher glucose concentrations (20 and 30%) were higher than those of the control (0% glucose) and also increased with increasing glucose concentration from 10 to 30%. The effect of glucose on steady and dynamic shear rheological properties of the SPS pastes appears to greatly depend on glucose concentration in the range of 10-30%.

Effect of Guar Gum on Rheological Properties of Acorn Flour Dispersions

  • Yoo, Byoung-Seung;Shon, Kwang-Joon;Chang, Young-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Rheological properties of acorn flour-guar gum mixtures (4% w/w) at different guar gum concentrations (0, 0.2, 0.4, 0.6, and 0.8% w/w) were evaluated in steady and dynamic shear. The acorn flour-guar gum mixtures at $25^{\circ}C$ showed high shear-thinning flow behavior (n= 0.20-0.27). Consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) increased with the increase in guar gum concentration. Within the temperature range of $25-70^{\circ}C$, the {\eta}_{a,100}$ of mixtures obeyed the Arrhenius relationship with high determination coefficient ($R^2=\;0.974-0.994$). Activation energy values (5.37-6.77 kJ/mole) of acorn flour dispersions in the mixtures with guar gum (0.2-0.8%) were much lower than that (12.5 kJ/mole) of acorn flour dispersion (0% guar gum). Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) increased with the increase in guar gum concentration. Dynamic rheological data of 1n (G', G") versus ln frequency (w) of guar gum-acorn flour mixtures had positive slopes with G' greater than G" over most of the frequency range, indicating that they exhibited weak gel-like behavior.

A Study on Fluid Flow of Various Viscosities in Coronary Artery (관상동맥 분지관에서 점도에 따른 유체의 유동현상 연구)

  • An, Gi-Yeong;Lee, Hyeon-Seop
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.403-408
    • /
    • 2013
  • 본 논문은 EDISON_CFD를 이용하여 관상동맥 분지관에서 점도에 따른 유체의 유동현상에 관하여 연구를 하였다. 뉴턴유체인 물의 점성계수 일때와 비뉴턴유체인 혈액의 Carreau model에서의 영전단율 점성계수(${\eta}_0$)와 무한전단율 점성계수(${\eta}_{\infty}$)일 때의 유동현상을 살펴보았다. 그 결과 점도가 증가할수록 재순환 영역에서 유체의 속도가 감소하였고 CF 및 CP값이 감소하는 구간의 수가 증가하여 벽면의 저전단응력으로 인해 생기는 재순환영역의 수가 증가하는 것으로 나타났다.

  • PDF

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

Rheological and Pasting Properties of Potato Flour Dispersions (감자가루 분산액의 유변학적 및 페이스팅 특성 분석)

  • Heo, Hyemi;Won, Chuin;Jin, Yong-Ik;Chang, Dong-Chil;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1407-1413
    • /
    • 2015
  • The objective of this study was to investigate the rheological and pasting properties of potato flour dispersions at different concentrations (3, 4, 5, 6, and 7%, w/w). A potato cultivar 'Goun', used in this study, was developed by Highland Agriculture Research Center, RDA. Potato flour dispersions showed shear-thinning behaviors (n=0.44~0.51) at $25^{\circ}C$. Apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) significantly increased with an increase in potato flour concentration. Storage modulus (G') and loss modulus (G") significantly increased, whereas complex viscosity (${\eta}^*$) was significantly reduced with increasing frequency (${\omega}$) from 0.63 to 63.8 rad/s. Magnitudes of G' and G" were significantly increased with elevation of potato flour concentration. G' values were considerably greater than G" over the entire range of frequency (${\omega}$) with a high dependence on ${\omega}$. Cox-Merz rule was not applicable to potato flour dispersions. Rapid Visco Analyzer data showed that peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and set back viscosity of samples significantly increased with an increase in potato flour concentration.

Analysis of Whole Grains Extrusion by Response Surface Methodology (반응표면분석법에 의한 전곡립의 압출성형공정 분석)

  • Shin, Hae-Hun;Park, Bo-Sun;Lee, Hye-Lim;Choi, Moon-Jung;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.686-692
    • /
    • 2001
  • The effects of extrusion on solubilization of brown rice, glutinuous rice, barley and job's tear were analyzed by response surface methodology (RSM). Solubilization of whole grains by extrusion was characterized in terms of water solubility index (WSI), concentration of water soluble polysaccharides (C) and intrinsic viscosity $([\eta])$. Considering both concentration and intrinsic viscosity, a dimensionless target parameter $([\eta])$ was also included for analysing the extrusion effects on cereal extrusion. Response surface methodology analysis showed that the moisture content was the most significant contributor among screw speed, temperature and moisture content affecting the solubilizing phenomena of cereals processed with extrusion. Brown rice was not showed the significant relationship on $([\eta])$ because $([\eta])$ was more affected by intrinsic viscosity. The critical point of whole grains extrusion except brown rice was corresponded to screw speed of 300 rpm, moisture content of 20% and temperature of $120^{\circ}C$.

  • PDF

A Study for the Viscous Flow of Sodium Chloride Through a Cuprophane Membrane

  • Jee Jong-Gi;Kwun Oh Cheun;Jhon Mu Shik;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 1982
  • For the study of transport phenomena of an aqueous NaCl solution through a cuprophane membrane, a new apparatus was constructed. The volumc flow rate Q, the permeability coefficient U, and the permeability constant K were measured or determined by using this apparatus. The experimental temperature range was 5 to $35^{\circ}C$, and the applied pressure increments were 10 to 40 psi. By assuming that the cuprophane membrane is composed of n parallel cylindrical capillaries of circular cross-section and that the flow of the solution through the capillaries follows the Poiseulle law, the mean radius r of the capillaries and the number n of the latter in the membrane were evaluated. By using a reasonable assumption concerning the radius ${\eta}'$ of the species diffusing through the membrane, it was concluded that the contribution of the diffusive flow to the total flow rate Q is less than 10%. Thus, the Q was treated as the rate due to the viscous flow, and the viscosity ${\eta}_m$ of the solution in the membrane phase was evaluted, and it was found that ηm is nearly equal to ${\eta}_b$, the bulk viscosity of the solution. From this fact, it was concluded that in the capillaries, no change occurs in the physical state of the NaCl solution. The value of ( = 4.27 kcal/mole) and ${\Delta}Sm^{\neq}$(4.28 eu) were obtained for the viscous flow. A possible explanation was given.

The Physical Properties of Thermotropic Side-Chain Triblock Copolymers of n-Butyl Acrylate and a Comonomer with Azobenzene Group

  • Dan, Kyung-Sik;Kim, Byoung-Chul;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.313-318
    • /
    • 2009
  • The side chain liquid crystal triblock copolymers (TBCs), which underwent phase transitions below their decomposition temperature, were prepared by copolymerization of poly(n-butyl acrylate) and a comonomer containing the mesogenic azobenzene group. The physical properties of TBCs in the distinctive transition temperature ranges were investigated in terms of the liquid crystal (LC) content in the copolymers. The phase transition temperatures traced optically, thermally and rheologically were well coincided one another and clearly exhibited the phase transition of smectic-nematic-isotropic with increasing temperature. In the smectic phase, increasing temperature made the liquid crystal system more elastic, but viscosity (${\eta}'$) remained almost constant. In the nematic phase, increasing temperature abruptly decreased ${\eta}'$ and G', ultimately leading to isotropic phase. Both smectic and nematic phases exhibited Bingham viscosity behavior but the former gave much greater yield stress at the same LC content.