• 제목/요약/키워드: viscoelastic soil

검색결과 30건 처리시간 0.019초

복합모형을 이용한 점탄성지반의 지반-구조물 상관관계 (Hybrid Modelling of Soil-Structure System on Viscoelastic Soil Medium)

  • 홍규선;윤정방
    • 대한토목학회논문집
    • /
    • 제6권1호
    • /
    • pp.35-41
    • /
    • 1986
  • 본 논문에서는 점탄성지반의 지반-구조물 시스템을 해석하는 복합모형기법이 연구되었다. 복합모형은 지반-구조물 시스템을 구조물과 구조물주위의 반구형태의 지반으로 구성된 내부영역과 반구바깥부분의 외부영역으로 나누어 해석하는 방법으로서, 내부영역은 유한요소로 모형화하고 외부영역은 주파수 종속 임피던스로 나타낸다. 점탄성지반에 대한 외부영역 임피던스는 탄성지반에 대하여 구한 임피던스함수에 Hysteretic damping항을 더해주는 방법을 사용하였으며, 이에 대한 검증은 점탄성지반의 강체원형판에 대한 임피던스를 이론적인 값과 비교함으로써 수행되었다. 예제해석은 대형굴뚝에 대하여 수행되었으며, 해석결과를 자주 사용되는 다른 방법에 의한 결과와 비교 검토하였다.

  • PDF

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

Dynamic response of vertically loaded rectangular barrettes in multilayered viscoelastic soil

  • Cao, Geng;Zhu, Ming X.;Gong, Wei M.;Wang, Xiao;Dai, Guo L.
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.275-287
    • /
    • 2020
  • Rectangular barrettes have been increasingly used as foundations for many infrastructure projects, but the vertical vibration of a barrette has been rarely addressed theoretically. This paper presents an analysis method of dynamic response for a rectangular barrette subjected to a time-harmonic vertical force with the aid of a modified Vlasov foundation model in multilayered viscoelastic soil. The barrette-soil system is modeled as a continuum, the vertical continuous displacement model for the barrette and soil is proposed. The governing equations of the barrette-soil system and the boundary conditions are obtained and the vertical shaft resistance of barrette is established by employing Hamilton's principle for the system and thin layer element, respectively. The physical meaning of the governing equations and shaft resistance is interpreted. The iterative solution algorithm flow is proposed to obtain the dynamic response of barrette. Good agreement of the analysis and comparison confirms the correctness of the present solution. A parametric study is further used to demonstrate the effects of cross section aspect ratio of barrettes, depth of soil column, and module ratio of substratum to the upper soil layers on the complex barrette-head stiffness and the resistance stiffness.

점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석 (Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper)

  • 김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.186-193
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load and a ten-story structure subjected to gravity and wind load were designed. the code-specified design spectrums were constructed for each soil type and performance objective and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Interstory drift was adopted as the primary performance criterion. According to the analysis results both model structures turned out to satisfy the life safety performance level for most of the soil conditions except for the soft soil. It was also found that the seismic performance could be greatly enhanced by installing viscoelastic dampers on appropriate locations.

  • PDF

점탄성감쇠기를 설치한 구조물의 비용효율성 평가 (Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers)

  • 고현무;함대기;조상열
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Settlement analysis of viscoelastic foundation under vertical line load using a fractional Kelvin-Voigt model

  • Zhu, Hong-Hu;Liu, Lin-Chao;Pei, Hua-Fu;Shi, Bin
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.67-78
    • /
    • 2012
  • Soil foundations exhibit significant creeping deformation, which may result in excessive settlement and failure of superstructures. Based on the theory of viscoelasticity and fractional calculus, a fractional Kelvin-Voigt model is proposed to account for the time-dependent behavior of soil foundation under vertical line load. Analytical solution of settlements in the foundation was derived using Laplace transforms. The influence of the model parameters on the time-dependent settlement is studied through a parametric study. Results indicate that the settlement-time relationship can be accurately captured by varying values of the fractional order of differential operator and the coefficient of viscosity. In comparison with the classical Kelvin-Voigt model, the fractional model can provide a more accurate prediction of long-term settlements of soil foundation. The determination of influential distance also affects the calculation of settlements.

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Bending of a rectangular plate resting on a fractionalized Zener foundation

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;Mei, Guo-Xiong
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1069-1084
    • /
    • 2014
  • The long-term performance of plates resting on viscoelastic foundations is a major concern in the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, bending moment and foundation reaction were compared to those from ideal elastic and standard viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of model parameters on the long-term performance of a foundation plate were systematically investigated. The results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional differential order value is needed. The fractionalized Zener model is capable of accounting for the primary and secondary consolidation processes of the foundation soil and can be used to predict the plate performance over many decades of time.

점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석 (Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper)

  • 김진구;최현훈
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.271-278
    • /
    • 2000
  • 본 연구에서는 철골조 건물의 내진 보강 방법으로 점탄성 감쇠기의 적용과 효과에 대하여 성능에 기초한 내진 설계의 관점에서 연구하였다. 먼저 단자유도계 구조물을 대상으로 입력된 지진에너지의 소산에 대한 감쇠기의 효과에 대하여 연구하였다. 설계하중으로 중력하중을 적용한 5층 건물과 중력하중과 풍하중을 적용한 10층과 20층 건물에 대하여 해석을 수행하였다. 비선형 시간이력해석을 수행하기 위하여 성능에 기초한 내진설계기준(안)에 제시된 표준 설계응답스펙트럼을 각 지반종류와 성능목표에 대하여 구성하고, 이를 바탕으로 인공지진을 생성하였다. 해석결과에 따르면 층간변위를 성능기준으로 적용하였을 때 모든 모델이 연약지반(기능수행 성능목표)을 제외한 대부분의 지반조건에서 기준안에 제시된 성능목표를 만족하였다. 또한 적당한 위치에 점탄성 감쇠기를 설치함으로써 내진성능을 향상시키고 구조물이 탄성적으로 거동하도록 유도함을 보였다.

  • PDF