• Title/Summary/Keyword: viscoelastic effect

Search Result 274, Processing Time 0.025 seconds

A Study on the Vibration Control of the Slab Using the Viscoelastic Material (점탄성 소재를 이용한 바닥판의 진동저감에 관한 연구)

  • Kim, Soo-Jin;Hwang, Jae-Seung;Kim, Hong-Jin;Kim, Do-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.526-529
    • /
    • 2005
  • Attempts have been applied to reduce the vibration of slab. There are several method in the vibration control of slab from a traditional method such as increment of mass or stiffness of slab to a innovative method augmenting damping of slab. In this study, a attempt has been made to increase the effective damping in slab using the viscoelastic dampers made of viscoelastic material. The dampers are installed in a gab between slab and a beam. It is assumed that the stiffness of the beam is infinity for simplicity of the evaluation. we evaluate the reduction effect of the slab selected through numerical simulation and optimization process by applying it to a FEM model. The numerical simulation shows that the effective damping is increased as the number of bean is increased and the vibration control effect is very high.

  • PDF

An exact solution of dynamic response of DNS with a medium viscoelastic layer by moving load

  • S.A.H. Hosseini;O. Rahmani;H. Hayati;M. Keshtkar
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.193-210
    • /
    • 2023
  • This paper aims to analyze the dynamic response of a double nanobeam system with a medium viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal parameter is significantly important and the classical theories are not suitable for nano and microstructures.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

PARAMETER IDENTIFICATION FOR NONLINEAR VISCOELASTIC ROD USING MINIMAL DATA

  • Kim, Shi-Nuk
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.461-470
    • /
    • 2007
  • Parameter identification is studied in viscoelastic rods by solving an inverse problem numerically. The material properties of the rod, which appear in the constitutive relations, are recovered by optimizing an objective function constructed from reference strain data. The resulting inverse algorithm consists of an optimization algorithm coupled with a corresponding direct algorithm that computes the strain fields given a set of material properties. Numerical results are presented for two model inverse problems; (i)the effect of noise in the reference strain fields (ii) the effect of minimal reference data in space and/or time data.

Vibration Anatysis on plates Stffened wlth Viscoelastic Beams (점탄성보로 보강된 평판의 진동해석)

  • Choi, Jang-Woo;Jung, Seok-Ju;Jung, Kang
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.47-58
    • /
    • 1989
  • This paper treats the vibration analysis of a simply supported rectangular plate stiffened with viscoelastic beams. The effect of viscoelastic beams on the vibration of the plate is analyzed by using Dirac delta function and the equation of motion can be expressed only one equation. The frequency equation is obtained by applying Laplace transformation. The effect of volumes, numben and aspect ratios of beam on the frequency of the plate is analyzed.

  • PDF

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

Mechanics of nonlocal advanced magneto-electro-viscoelastic plates

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Tornabene, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.257-269
    • /
    • 2019
  • This paper develops a nonlocal strain gradient plate model for damping vibration analysis of smart magneto-electro-viscoelastic nanoplates resting on visco-Pasternak medium. For more accurate analysis of nanoplate, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Viscoelastic effect which is neglected in all previous papers on magneto-electro-viscoelastic nanoplates is considered based on Kelvin-Voigt model. Governing equations of a nonlocal strain gradient smart nanoplate on viscoelastic substrate are derived via Hamilton's principle. Galerkin's method is implemented to solve the governing equations. Effects of different factors such as viscoelasticity, nonlocal parameter, length scale parameter, applied voltage and magnetic potential on damping vibration characteristics of a nanoplate are studied.

Longitudinal vibration of a nanorod embedded in viscoelastic medium considering nonlocal strain gradient theory

  • Balci, Mehmet N.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This article investigates the longitudinal vibration of a nanorod embedded in viscoelastic medium according to the nonlocal strain gradient theory. Viscoelastic medium is considered based on Kelvin-Voigt model. Governing partial differential equation is derived based on longitudinal equilibrium and analytical solution is obtained by adopting harmonic motion solution for the nanorod. Modal frequencies and corresponding damping ratios are presented to demonstrate the influences of nonlocal parameter, material length scale, elastic and damping parameters of the viscoelastic medium. It is observed that material length scale parameter is very influential on modal frequencies especially at lower values of nonlocal parameter whereas increase in length scale parameter has less effect at higher values of nonlocal parameter when the medium is purely elastic. Elastic stiffness and damping coefficient of the medium have considerable impacts on modal frequencies and damping ratios, and the highest impact of these parameters on frequency and damping ratio is seen in the first mode. Results calculated based on strain gradient theory are quite different from those calculated based on classical elasticity theory. Hence, nonlocal strain gradient theory including length scale parameter can be used to get more accurate estimations of frequency response of nanorods embedded in viscoelastic medium.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn, Chang-Hyun;Ahn, Seong-Tae;Jang, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.