• Title/Summary/Keyword: viscoelastic effect

Search Result 274, Processing Time 0.023 seconds

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn C. H.;Ahn S. T.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.114-120
    • /
    • 1998
  • The present numerical study investigates flow characters and heat transfer enhancement by the viscoelastic-driven secondary flow and buoyancy effect in a 2:1 rectangular duct. Three versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is used. Calculated Nusselt numbers are very good agreement with experimental results for reported viscoelastic fluids. It is found that the heat transfer enhancement is mainly caused by the viscoelastic-driven secondary flow and buoyancy-induced secondary flow play a role of promoting this effect.

  • PDF

Curing Induced Residual Stresses in Laminated Cylindrical Shells

  • Lee, Soo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • A viscoelastic finite element analysis is presented to investigate residual stresses occurred in a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that can describe stress relaxation during the cure is derived as a recursive formula which can be used conveniently for a numerical analysis. The finite element analysis program is developed on the basis of a 3-D degenerated shell element and the first order shear deformation theory, and is verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual stresses in the laminated shell during the cure is investigated by performing both the viscoelastic and linear elastic analyses considering thermal deformation and chemical shrinkage simultaneously. The results show that there is big difference between viscoelastic stresses and linear elastic stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.

  • PDF

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

Discharge and loss coefficients for viscoelastic fluids in differential pressure flow meters (차압식 유량계에서 점탄성유체의 유출 및 손실계수)

  • Jeon, U-Cheong;Jo, Byeong-Su;Baek, Byeong-Jun;Park, Bok-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1501-1509
    • /
    • 1996
  • Differential pressure devices such as an orifice and Venturi are widely used in the measurement of flow rate of fluid mainly due to cost effectiveness and easy installation. In the current study, the viscoelastic effect on discharge and loss coefficients of those flow meters were investigated experimentally. Aqueous solutions of Polyacrylamide (200, 500, and 800 ppm) as viscoelastic fluids were used. Discharge coefficient of an orifice for viscoelastic fluids increased significantly up to approximately 15-20% when compared with that for water, while loss coefficient decreased up to 10-25% depending on the diameter ratio, .betha.. Also, pressure recovery for viscoelastic fluids was extended much longer than that for water. On the other hand, discharge and loss coefficients of Venturi for viscoelastic fluids were found to be strongly dependent on the Reynolds number. In both flow meters, the concentration effect for discharge and loss coefficients was not observed at more over than 200 ppm of aqueous solution. Conclusively, orifice and Venturi flow meters should be calibrated very carefully in the flow rate measurement for viscoelastic fluids.

Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Khan, Aftab
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.221-230
    • /
    • 2017
  • In this paper, we investigated the propagation of thermoelastic surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order of nth order including time rate of strain under the influence of rotation. The general surface wave speed is derived to study the effectsof rotation andthermal onsurface waves. Particular cases for Stoneley, Love and Rayleighwaves are discussed.The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Our results for viscoelastic of order zero are well agreed to fibre-reinforced materials. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is also observed that, surface waves cannot propagate in a fast rotating medium.Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation on fibre-reinforced anisotropic general viscoelastic media are very pronounced.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (I-Theoretical analysis)

  • He, Xiao-Yu;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.157-174
    • /
    • 2016
  • Based on classical viscoelastic damper, a brand-new damper is designed by the change of simple construction to implement vibration control for both translational vibration and rotational vibration simultaneously. Theoretic analysis has been carried out on the restoring force model and the control parameters. Two improved models are presented to obtain high simulation precision. The influence of the size, shape of the viscoelastic material, the ambient temperature and the response frequency on the vibration control effect is analyzed. The numerical results show that the new type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform and the response control effect has complicated relations with aforementioned related factors.