• Title/Summary/Keyword: visco-plastic

Search Result 83, Processing Time 0.033 seconds

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

Various Dynamic Behavior of Three Point Bend Specimens under Rapid Loading (빠른 하중을 받고 있는 3점 굽힘 시험편들의 다양한 동적거동)

  • Lee, Ouk-Sub;Cho, Jae-Ung;Han, Moon-sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.178-188
    • /
    • 1999
  • 충격하중을 받는 시험편 높이의 1/4 길이의 notch를 가진 3점 굽힘시험편들의 기계적 거동에 관한 컴퓨터 시뮬레이션을 하고 이 시뮬레이션에 대한 실험적 검증도 하여 그 타당성을 입증하였다. 시험편들의 양쪽 가장자리(지지점)에서 작용되어지는 여러 가지의 하중속도에 대한 경우들과 탄소성 von Mises 재질인 모델들을 시뮬레이션에 포함시켰으며 이들에 대한 결과들을 간극 개구 변위, 반력, 크랙선단 개구 변위 및 변형률등이 속도에 의존되는 재질(점소성 재질)에 대한 시뮬레이션 결과와 비교하였다. 또한 여러가지의 동적 하중을 받는 상황하에서의 안정성이 본 연구의 시뮬레이션을 통하여 비교되었으며 그 차이점들이 규명되었다.

  • PDF

Estimation of Preceding Displacement at Tunnel Excavation by NATM (NATM 시공에 의한 터널 굴착시 선행변위 추정에 관한 연구)

  • 신동오;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.87-95
    • /
    • 1998
  • Field instrumentation and numerical analysis by the finite difference method were applied to estimate the relaxed zone in a subway tunnel of shallow depth in soft rock, excavated by NATM. The convergence and ground displacement can be used to estimate the deformation behavior and the relaxed zone. Parameters for the several models previously suggested were measured using regression analysis techniques adopting a function of time and the face advance. The estimated relaxed zone by the MPBX and FDM analysis were 1.5~3.0 m and 1.5~2.0 m, respectively. It was concluded that the visco-elastic model and the time-dependent elasto-plastic model correlate very well ($r^2$>0.9) with results of the numerical analyses.

  • PDF

Rigid-Body-Spring Network with Visco-plastic Damage Model for Simulating Rate Dependent Fracture of RC Beams (Rigid-Body-Spring Network를 이용한 RC 보의 속도 의존적 파괴 시뮬레이션)

  • Lim, Yun-Mook;Kim, Kun-Hwi;Ok, Su-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.265-268
    • /
    • 2011
  • 하중 속도에 따른 콘크리트 재료의 역학적 특성은 구조물의 동적파괴거동에 영향을 미친다. 본 연구는, rigid-body-spring network를 이용하여 파괴해석을 수행하고, 거시적 시뮬레이션에서 속도효과를 표현하기 위하여 점소성 파괴모델을 적용하였다. 보정을 위해서 Perzyna 구성관계식의 점소성 계수들이 다양한 하중속도에 따른 직접인장실험을 통해서 결정되었다. 동정상승계수를 이용하여 하중 속도가 증가함에 따른 강도 증가를 표현하였고 이를 실험결과와 비교하였다. 다음으로 느린 하중속도와 빠른 하중속도에 따라 단순 콘크리트 보와 철근 콘크리트 보에 대한 휨 실험을 수행하였으며, 하중 속도에 따라서 서로 다른 균열 패턴을 관찰할 수 있었다. 빠른 하중은 보의 파괴가 국부적으로 나타나게 만드는데, 이는 속도 의존적 재료의 특성 때문이다. 구조적인 측면에서, 보강재는 느린 하중속도에서 균열의 크기를 줄이고 연성을 높이는 데 큰 영향을 미친다. 본 논문은 속도 의존적 거동에 대한 이해와 동적하중에 대한 보강효과를 제시한다.

  • PDF

Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I) (비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I))

  • 김영석;최홍석;임성언
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF

STUDY ON DYNAMIC BEHAVIOUR IN 3PB DUCTILE STEEL SPECIMEN APPLIED BY THE IMPACT LOAD

  • HAN M. S.;CHO J. U.;BERGMARK A.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.229-234
    • /
    • 2005
  • The dynamic crack growth in ductile steel is investigated by means of the impact loaded 3 point bending (3PB) specimens. Results from experiments and numerical simulations are compared to each other. A modified 3PB specimen designed with the reduced width at its ends has been developed in order to avoid the initial compressive loading of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations of the experiments are made by using a finite element method (FEM) code, ABAQUS. The high speed photography is used to obtain the crack growth and the data of the crack tip opening displacement (CTOD). The direct measurements of the relative rotations of two specimen halves are made by using the Moire interference pattern.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

Modeling of the Temperature-Dependent and Strain Rate-Dependent Dynamic Behavior of Glass Fiber-Reinforced Polyurethane Foams (유리 섬유 강화 폴리우레탄 폼의 온도 및 변형률 속도 의존 재료 거동 모델링)

  • Lee, Dong-Ju;Shin, Sang-Beom;Kim, Myung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2019
  • The purpose of this study was to establish a numerical model of polyurethane foam (PUF) to simulate the dynamic response and strength of membrane-type Liquefied natural gas (LNG) Cargo containment system (CCS) under the impact load. To do this, initially, the visco-plastic behavior of PUF was characterized by testing the response of the PUF to the impact loads with various strain rates as well as PUF densities at room temperature and at cryogenic conditions. A PUF material model was established using the test results of the material and the FE analysis. To verify the validation of the established material model, simulations were performed for experimental applications, e.g., the dry drop test, and the results of FEA were compared to the experimental results. Based on this comparison, it was found that the dynamic response of PUF in dry drop tests, such as the reaction force and fracture behaviors, could be simulated successfully by the material model proposed in this study.

Numerical Fatigue Test Method Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 수치 피로시험 기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.63-69
    • /
    • 2007
  • Once assessment of material failure characteristics is captured precisely in a unified way, it can bedirectly incorporated into the structural failure assessment under various loading environments, based on the theoretical backgrounds so called Local Approach to Fracture. The aim of this study is to develop a numerical fatigue test method by continuum damage mechanics applicable for the assessment of structural integrity throughout crack initiation and structural failure based on the Local Approach to Fracture. The generalized elasto-visco-plastic constitutive equation, which can consider the internal damage evolution behavior, is developed and employed in the 3-D FEA code in order to numerically evaluate the material and/or structural responses. Explicit information of the relationships between the mechanical properties and material constants, which are required for the mechanical constitutive and damage evolution equations for each material, are implemented in numerical fatigue test method. The material constants selected from constitutive equations are used directly in the failure assessment of material and/or structures. The performance of the developed system has been evaluated with assessing the S-N diagram of stainless steel materials.