• Title/Summary/Keyword: virus-based expression vector

Search Result 46, Processing Time 0.02 seconds

Production of Red-spotted Grouper Nervous Necrosis Virus (RGNNV) Capsid Protein Using Saccharomyces cerevisiae Surface Display (Saccharomyces cerevisiae 표면 발현을 이용한 붉바리 신경괴사 바이러스 외피단백질의 생산)

  • Park, Mirye;Suh, Sung-Suk;Hwang, Jinik;Kim, Donggiun;Park, Jongbum;Chung, Young-Jae;Lee, Taek-Kyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.995-1000
    • /
    • 2014
  • The studies of marine viruses in terms of viral isolation and detection have been limited due to the high mutation rate and genetic diversity of marine viruses. Of the modern methods currently used to detect marine viruses, serological methods based on enzyme-linked immunosorbent assay (ELISA) are the most common. They depend largely on the quality of the antibodies and on highly purified suitable antigens. Recently, a new experimental system for using viral capsid protein as an antigen has been developed using the yeast surface display (YSD) technique. In the present study, the capsid protein gene of the red-spotted grouper nervous necrosis virus (RGNNV) was expressed and purified via YSD and HA-tagging systems, respectively. Two regions of the RGNNV capsid protein gene, RGNNV1 and RGNNV2, were individually synthesized and subcloned into a yeast expression vector, pCTCON. The expressions of each RGNNV capsid protein in the Saccharomyces cerevisiae strain EBY100 were indirectly detected by flow cytometry with fluorescently labeled antibodies, while recognizing the C-terminal c-myc tags encoded by the display vector. The expressed RGNNV capsid proteins were isolated from the yeast surface through the cleavage of the disulfide bond between the Aga1 and Aga2 proteins after ${\beta}$-mercaptoethanol treatment, and they were directly detected by Western blot using anti-HA antibody. These results indicated that YSD and HA-tagging systems could be applicable to the expressions and purification of recombinant RGNNV capsid proteins.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

Hepatitis B Virus-Induced TNF-a Expression in Hepa-lc1c7 Mouse Hepatoma Cell Line (마우스 Hepa-1c1c7 세포주에서 B형 간염 바이러스에 의한 tumor necrosis factor-a의 발현 유도)

  • Yea Sung Su;Jang Won Hee;Yang Young-Il;Lee Youn Jae;Kim Mi Seong;Seog Dae-Hyun;Park Yeong-Hong;Paik Kye-Hyung
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.38-44
    • /
    • 2005
  • Infection with hepatitis B virus (HBV) is a major health problem worldwide. Although a tremendous amount has been known about HBV, there have been obstacles in the study of HBV due to the narrow host range of HBV limited to humans and primates. In the present study, we investigated the susceptibility to HBV infection of mouse hepatoma cell line, Hepa-1c1c7. In addition, based on that human hepatocytes infected by HBV increase the expression of the pro-inflammatory cytokine TNF-a, the inducibility of TNF-a expression by HBV in the cells was determined. HBV surface antigen (HBsAg) secretion was measured by the microparticle enzyme immunoassay and steady state mRNA expression was analyzed by quantitative competitive RT-PCR. Transient transfection of Hepa-1c1c7 cells with HBV expression vector resulted in a dose-dependent induction of TNF-a expression. Infection of Hepa-1c1c7 cells with the serum of HBV carrier also increased TNF-a mRNA expression. Both in the transfected and infected cells, HBV mRNA was expressed and significant HBsAg secretion was detected. There was no significant variation in $\beta-actin$ mRNA expression by HBV. These results demonstrate that HBV is infectious to Hepa-lc1c7 in vitro and the viral infection induces TNF-a expression, which suggests that Hepa-lc1c7, a mouse hepatoma cell line, may be a possible model system for analysis of various molecular aspects of HBV infection.

Assessment of the effects of virus-mediated limited Oct4 overexpression on the structure of the hippocampus and behavior in mice

  • Sim, Su-Eon;Park, Soo-Won;Choi, Sun-Lim;Yu, Nam-Kyung;Ko, Hyoung-Gon;Jang, Deok-Jin;Lee, Kyung-Min;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.793-798
    • /
    • 2011
  • Recently, pluripotency induction or cellular reprogramming by introducing critical transcription factors has been extensively studied, but has been demonstrated only in vitro. Based on reports that Oct4 is critically involved in transforming neural stem cells into pluripotent cells, we used the lentiviral vector to introduce the Oct4 gene into the hippocampal dentate gyrus (DG) of adult mice. We examined whether this manipulation led to cellular or behavioral changes, possibly through processes involving the transformation of NS cells into pluripotent cells. The Oct4 lentivirus-infused group and the green fluorescent protein lentivirus-infused group showed a similar thickness of the DG and a comparable level of synaptophysin expression in the DG. Furthermore, our behavioral analyses did not show any differences between the groups concerning exploratory activity, anxiety, or memory abilities. This first trial for pluripotency induction in vivo, despite negative results, provides implications and information for future studies on in vivo cellular reprogramming.

Transgenic tobacco culture cells expressing spike protein gene of porcine epidemic diarrhea virus (돼지 유행성 설사병 바이러스 스파크 단백질 유전자 발현 형질전환 담배 배양세포)

  • Yang, Kyoung-Sil;Kim, Hyeon-Soo;Kwon, Suk-Yoon;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.87-94
    • /
    • 2008
  • Porcine epidemic diarrhea virus (PEDV) is an infectious and highly contagious virus of swine. In order to develop the transgenic tobacco culture cells producing PEDV antigen protein, four vectors expressing PEDV spike protein (SP) gene under the control of a CaMV 35S promoter were constructed. Four fragments of the SP region of PEDV, SP1 (444 bp, 1487-1930 bp), SP2 (1.7 kb, 2300-3987 bp), SP3 (1.4 kb, 1559-2950 bp), and SP4 (2.6 kb, 9-2643 bp) were amplified by PCR and then C-MYC tag was fused to the end of each SP gene, respectively. These cassettes are inserted into the pCAMBIA2300 (named as 35S::SP1-M, 35S::SP2-M 35S::SP3-M, and 35S::SP4-M, respectively). Tobacco (cv. BY-2) cultured cells were transformed by co-cultivation with Agrobacterium tumefaciens harboring expression vector. We selected kanamycin-resistant calli and checked for the presence of the introduced SP gene using PCR, resulting 70% of them showed the foreign gene. We selected the lines with high-level expression of PEDV antigen protein based on dot blot analysis. Southern blot analysis confirmed that the PEDV SP gene was integrated into the genome of the tobacco cultured cells. Northern blot analysis showed that the introduced gene was highly expressed in transgenic cultured cells. Transgenic tobacco cultured cells-derived antigen induced immunogenicity in mice as determined by a plaque reduction neutralization assay. These results suggest that the vectors expressing PEDV spike protein gene in this study will be useful for the development of transgenic plants and cultured cells producing PEDV antigene protein.

Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library (Salt cress 유전자의 형질전환을 통한 내염성 식물체 선별)

  • Baek, Dongwon;Choi, Wonkyun;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Kim, Chanmin;Park, Hyeong Cheol;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Salt cress (Thellungiella halophila or Thellungiella parvula), species closely related to Arabidopsis thaliana, represents an extremophile adapted to harsh saline environments. To isolate salt-tolerance genes from this species, we constructed a cDNA library from roots and leaves of salt cress plants treated with 200 mM NaCl. This cDNA library was subsequently shuttled into the destination binary vector [driven by the cauliflower mosaic virus (CaMV) 35S promoter] designed for plant transformation and expression via recombination- assisted cloning. In total, 305,400 pools of transgenic BASTA-resistant lines were generated in Arabidopsis using either T. halophila or T. parvula cDNA libraries. These were used for functional screening of genes involved in salt tolerance. Among these pools, 168,500 pools were used for primary screening to date from which 7,157 lines showed apparent salt tolerant-phenotypes in the initial screen. A secondary screen has now identified 165 salt tolerant transgenic lines using 1,551 (10.6%) lines that emerged in the first screen. The prevalent phenotype in these lines includes accelerated seed germination often accompanied by faster root growth compared to WT Arabidopsis under salt stress condition. In addition, other lines showed non-typical development of stems and flowers compared to WT Arabidopsis. Based on the close relationship of the tolerant species to the target species we suggest this approach as an appropriate method for the large-scale identification of salt tolerance genes from salt cress.