• Title/Summary/Keyword: virus safety

Search Result 265, Processing Time 0.023 seconds

Partitioning and Inactivation of Viruses by Cold Ethanol Fractionation and Pasteurization during Manufacture of Albumin from Human Plasma

  • Kim, In-Seop;Eo, Ho-Gueon;Chang, Chon-Geun;Lee, Soung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.858-864
    • /
    • 2000
  • The purpose of the present study was to examine the efficacy and mechanism of the fraction IV cold ethanol fractionation and pasteurization ($60^{\circ}C$ heat treatment for 10h) steps, involved in the manufacture of albumin from human plasma, in the removal and/or inactivation of blood-born viruses. A variety of experimental model viruses for human pathogenic viruses, including the Bovine viral diarrhoea virus (BVDV), Bovine herpes virus (BHV), Murine encephalomyocarditis virus (EMCV), and Porcine parvovirus (PPV), were selected for this study. Samples from the relevant stages of the production process were spiked with the viruses, and the amount of virus in each fraction was then quantified using a 50% tissue culture infectious dose ($TCID_{50}$). The mechanism of reduction for the enveloped viruses (BHV and BVDV) during fraction IV fractionation was inactivation rather than partitioning, however, it was partitioning in the case of the non-enveloped viruses (EMCV and PPV). The log reduction factors achieved during fraction IV fractionation were ${\geq}6.9$ BHV, $\geq5.2$ for BBDV, 4.9 for EMC, and 4.0 for PPV. Pasteurization was found to be a robust and effective step in inactivating the enveloped viruses as well as EMCV. The log reduction factors achieved during pasteurization were $\geq7.0$ for BHV, $\geq6.1$ for BVDV, $\geq6.3$ for EMCV, and 1.7 for PPV. These results indicate that the production process for albumin has sufficient virus-reducing capacity to achieve a high margin for virus safety.

  • PDF

Molecular Detection and Characterization of Orf Virus from Outbreak of Contagious Pustular Dermatitis in Korean Indigenous Goats (한국 재래 산양의 전염성 농피성 피부병에서 orf virus의 검출과 B2L 유전자를 통한 계통발생학적 분석)

  • Park, Jin-Ho;Kim, Guk-Jong;Choi, Wook;Kim, Eun-Ha;Han, Jae-Chul;Ou, Sung-Guk;Lee, Jon-Hwa;Cho, Mae-Rim;Song, Hee-Jong;Chae, Jun-Seok
    • Journal of Veterinary Clinics
    • /
    • v.21 no.2
    • /
    • pp.102-108
    • /
    • 2004
  • Orf virus (ORFV), a member of genus Parapoxvirus (family-Poxviridae), a causative agent of contagious ecthyma in sheep and goat leading to a condition commonly known as vesicular dermatitis. Recently, twelve goats from Iksan in Jeonbuk province were observed with clinical signs like necrotic vesicular lesions around the mucosa of mouth, nasal cavity, eye, ear, teats, abdomen and groin. Based on these clinical symptoms, contagious ecthyma infection was suspected. The skin scrapping was collected from lesions for isolation of DNA and subsequent PCR amplification of ORFV specific 235 bp region of B2L gene. All of the samples were found positive by PCR analysis. Sequencing and further phylogenetic analysis of the PCR product revealed 100% identity to Japan isolate of ORFV (Okinawa, GenBank accession number AB080769), and showed 99.6% of similarity to New Zealand strain (NZ-2, GenBank accession number U06671). It was concluded that ORFV strain detected in the present study is homologous to Japan isolate and New Zealand strain. The PCR test based on amplification of B2L gene is a highly useful tools for rapid and specific diagnosis of contagious ecthyma.

Detection of infectious canine hepatitis virus by TaqMan real-time PCR method (TaqMan 실시간 PCR법에 의한 개 전염성 간염 바이러스의 검출)

  • Wang, Hye-young;Choi, Jae-yong;Lee, Mi-jin;Park, Jin-ho;Cho, Mae-Rim;Han, Jae-cheol;Choi, Kyoung-seong;Chae, Joon-seok
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.655-662
    • /
    • 2004
  • The aim of this work was the validation of a rapid real-time PCR assay based on TaqMan technology for the unequivocal identification of infectious canine hepatitis (ICH) virus, to be used directly on DNA purified from blood specimens. A real-time PCR system targeting at the E3 ORFA gene sequence of canine adenovirus type 1 was optimized and validated through comparative analysis of samples using conventional PCR system. The real-time PCR assay based on TaqMan technology could disclose 23 (37.7%) out of 61 samples as PCR positive. In contrast, 18 (29.5%) samples were found PCR positive when conventional PCR was applied on these samples. The use of the ABI Prism 7700 sequence detection system allowed the efficient determination of the amplified product accumulation through a fluorogenic probe. The entire real-time TaqMan PCR assay, including DNA extraction, amplification, and detection could be completed within 3 hours. The detection method of real-time TaqMan PCR assay was 1,000 times more sensitive than conventional PCR. Real-time TaqMan probe and primer set developed and optimized in this study is a sensitive, rapid and accurate method for detection of ICH virus and can be effective screening tool for the detection of ICH in a diagnostic laboratory routines.

Removal and Inactivation of Human Immunodeficiency Virus(HIV-1) by Cold Ethanol Fractionation and Pasteurization during the Manufacturing of Albumin and Immunoglobulins from Human Plasma

  • Kim, In-Seop;Eo, Ho-Gueon;Park, Chan-Woo;Chong E. Chang;Lee, Soungmin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • Viral safety is a prerequisite for manufacturing clinical albumin and immunoglobulins from human plasma pools. This study was designed to evaluate the efficacy of cold ethanol fractionation and pasteurization (60$\^{C}$ heat treatment for 10h) for the removal/inactivation of human immunodeficiency virus type 1 (HIV-1) during the manufacturing of albumin and immunoglobulins. Samples from the relevant stages of the production process were spiked with HIV-1, and the amount of virus in each fraction was quantified by the 50% tissue culture infectious dose(TCID(sub)50). Both fraction IV fractionation and pasteurization steps during albumin processing were robust and effective in inactivating HIV-1, titers of which were reduced from an initial 8.5 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved were $\geq$ 4.5 and $\geq$ 6.5, respectively. In addition, fraction III fractionation and pasteurization during immunoglobulins processing were robust and effective in eliminating HIV-1. HIV-1 titers were reduced from an initial 7.3 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved in this case were $\geq$ 4.9 and $\geq$ 5.3, respectively. These results indicate that the process investigated for the production of albumin and immunoglobulins have sufficient HIV-1 reducing capacity to achieve a high margin of safety.

  • PDF

Pathology and virus distribution in the lymphoid tissues of chicks co-infection with H9N2 Avian influenza and Newcastle disease virus (저병원성 조류인플루엔자와 뉴캐슬 바이러스의 복합감염에 따른 닭 림프조직 병변의 특성 및 바이러스 검출)

  • Lee, Sung-Min;Cho, Eun-Sang;Choi, Hwan-Won;Choi, Bo-Hyun;Son, Hwa-Young
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.135-144
    • /
    • 2019
  • Low pathogenic avian influenza (LPAI; H9N2) and Newcastle disease (ND) are economically important poultry diseases in Korea. In this study, we investigated pathological features and virus distribution in the lymphoid tissues of chicks experimentally infected with H9N2 and/or ND virus. Six-weeks-old SPF chickens were divided into 4 groups, Control (C), H9N2 (E1), NDV (E2), and H9N2+NDV (E3). E1 group was challenged with 0.1 ml A/Kr/Ck/01310/01 (H9N2) $10^{5.6}$ $EID_{50}$ intranasally, E2 group was challenged with 0.5 ml KJW (NDV) $10^{5.0}{\sim}10^{6.0}$ $ELD_{50}$ intramuscularly, and E3 group was challenged with H9N2, followed 7 days later by NDV. In histopathological examination, E1 group showed depletion and necrosis in bursa of Fabricius, thymus, cecal tonsil, and spleen, whereas E2 and E3 groups were noted severe lymphocyte depletion and necrosis with destruction of lymphoid organs structures. In TUNEL assay, apoptotic bodies were detected in lymphoid organs of all experimental groups, which was most severe in E3 group. H9N2 and ND viruses were predominantly detected in cecal tonsil of E1, E2, and E3 groups by PCR and immunohistochemistry (ICH). In conclusion, co-infection of H9N2 with NDV caused severe pathologic lesions and apoptosis in lymphoid tissues compared to single infections.

Process Development of a Virally-Safe Acellular Bovine Amniotic Membrane for Biological Dressing (바이러스 안전성이 보증된 무세포 소 양막 생물창상피복재 제조 공정 개발)

  • Bae, Jung-Eun;Kim, Chang-Kyong;Kim, Sung-Po;Yang, Eun-Kyung;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.420-427
    • /
    • 2010
  • A process for manufacturing virally-safe bovine amniotic membrane(BAM) has been developed for biological dressing. BAM was harvested from a healthy bovine placenta, and then the epithelium was removed. The remaining stromal layer was consecutively disinfected with 70% ethanol and 0.05% sodium hypochlorite. The stromal layer was incubated in a decellularization solution containing 0.25%(w/v) trypsin to remove the cellular components. The resulting acelluar BAM was lyophilized to preserve its biochemical and structural integrity. The BAM was packed and exposed to 25 kGy of gamma irradiation for sterilization purpose. Histological, electron microscopical, and biochemical observations showed that the acellualr BAM had intact structural integrity of three dimensional collagen fibers and contained several growth factors, accelerating wound healing, such as EGF (Epidermal growth factor), KGF (Keratinocyte growth factor), and FGF (Fibroblast growth factor). Bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), bovine parainfluenza virus type 3 (BPIV-3), and bovine parvovirus (BPV) were chosen as the biological indicators for validation of viral safety of the acellular BAM. Samples from relevant stages of the production process were spiked with each virus and subjected to viral inactivation processes. Viruses were recovered from the samples and then titrated immediately. All the viruses tested were completely inactivated to undetectable levels within 1 h of 70% ethanol treatment. Enveloped viruses such as BHV, BVDV, and BPIV-3 were more effectively inactivated than BPV by 0.05% sodium hypochlorite treatment. BHV, BVDV, and BPIV-3 were completely inactivated to undetectable levels by 25 kGy of gamma irradiation. Also BPV was effectively inactivated by 25 kGy of gamma irradiation. The cumulative log reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}$13.30, ${\geq}$14.32, ${\geq}$15.22, and ${\geq}$7.57, respectively. These results indicate that the production process for acelluar BAM has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Need for a safe vaccine against respiratory syncytial virus infection

  • Kim, Joo-Young;Chang, Jun
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.309-315
    • /
    • 2012
  • Human respiratory syncytial virus (HRSV) is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

Development of a ladder-shape melting temperature isothermal amplification (LMTIA) assay for detection of African swine fever virus (ASFV)

  • Wang, Yongzhen;Wang, Borui;Xu, Dandan;Zhang, Meng;Zhang, Xiaohua;Wang, Deguo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.51.1-51.10
    • /
    • 2022
  • Background: Due to the unavailability of an effective vaccine or antiviral drug against the African swine fever virus (ASFV), rapid diagnosis methods are needed to prevent highly contagious African swine fever. Objectives: The objective of this study was to establish the ladder-shape melting temperature isothermal amplification (LMTIA) assay for the detection of ASFV. Methods: LMTIA primers were designed with the p72 gene of ASFV as the target, and plasmid pUC57 was used to clone the gene. The LMTIA reaction system was optimized with the plasmid as the positive control, and the performance of the LMTIA assay was compared with that of the commercial real-time polymerase chain reaction (PCR) kit in terms of sensitivity and detection rate using 200 serum samples. Results: Our results showed that the LMTIA assay could detect the 104 dilution of DNA extracted from the positive reference serum sample, which was the same as that of the commercial real-time PCR kit. The coincidence rate between the two assays was 100%. Conclusions: The LMTIA assay had high sensitivity, good detection, and simple operation. Thus, it is suitable for facilitating preliminary and cost-effective surveillance for the prevention and control of ASFV.

Comparative Inactivation of Hepatitis A Virus and Murine Encephalomyocarditis Virus to Various Inactivation Processes (바이러스 불활화 공정에 대한 Hepatitis A Virus와 Murine Encephalomyocarditis Virus의 민감도 비교)

  • Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.242-247
    • /
    • 2003
  • Murine encephalomyocarditis virus (EMCV) has been used as a surrogate for hepatitis A virus (HAV) for the validation of virus removal and/or inactivation during the manufacturing process of biopharmaceuticals. Recently international regulation for the validation of HAV safety has been reinforced because of the reported cases of HAV transmission to hemophiliac patients who had received ntihemophilic factors prepared from human plasma. The purpose of the present study was to compare the resistance of HAV and EMCV to various viral inactivation processes and then to standardize the HAV validation method. HAV was more resistant than EMCV to pasteurization (60oC heat treatment for 10 hr), low pH incubation (pH 3.9 at 25oC for 14 days), 0.1 M NaOH treatment, and lyophilization. EMCV was completely inactivated to undetectable levels within 2 hr of pasteurization, however, HAV was completely inactivated to undetectable levels after 5 hr treatment. EMCV was completely inactivated to undetectable levels within 15 min of 0.1 M NaOH treatment, however, residual infectivity of HAV still remained even after 120 min of treatment. The log reduction factors achieved during low pH incubation were 1.63 for HAV and 3.84 for EMCV. Also the log reduction factors achieved during a lyophilization process of antihemophilic factor VIII were 1.21 for HAV and 4.57 for EMCV. These results indicate that HAV rather than EMCV should be used for the virus validation study and the validation results obtained using EMCV should be precisely reviewed.