• Title/Summary/Keyword: virus entry

Search Result 73, Processing Time 0.027 seconds

Co-expression of MDRI and HLA-B7 Genes in a Mammalian Cell Using a Retrovirus

  • Lee, Seong-Min;Lee, Kyoo-Hyung;Kim, Hag-Dong;Lee, Je-Hwan;Lee, Jung-Shin;Kim, Joon
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.176-181
    • /
    • 2001
  • Using a retrovirus, foreign genes can be introduced into mammalian cells. The purpose of this study is to produce a retrovirus that can make the infected cells express two genes; the human multidrug resistance gene (MDR1) and the HLA-B7 gene, which is one of the major human histocompatibility complex (MHC) class I genes. For the expression of these genes, the internal ribosome entry site (IRES) was used, which was derived from the encephalomyocarditis (EMC) virus. In order to produce retroviruses, a retroviral vector was transfected into a packaging cell line and the transfected cells were treated with vincristine, which is an anti-cancer drug and a substrate for the MDRI gene product. This study revealed that two genes were incorporated into chromosomes of selected cells and expressed in the same cells. The production of the retrovirus was confirmed by the reverse transcription (RT)-PCR of the viral RNA. The retrovirus that was produced infected mouse fibroblast cells as well as the human U937. This study showed that packaging cells produced the retroviruses, which can infect the target cells. Once the conditions for the high infectivity of retrovirus into human cells are optimized, thus virus will be used to infect hematopoietic stem cells to co-express MDRl and HLA-B7 genes, and develop the lymphocytes that can be used for the immnogene therapy.

  • PDF

An OTHBVS Cell Line Expresses the Human HBV Middle S Protein

  • Park, Sung-Gyoo;Guhung Jung
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.86-89
    • /
    • 1999
  • An OTHBVS cell line from HepG2 was established. This cell line stably expresses the human hepatitis B virus (HBV) middle S protein that includes the preS2 region which is important for HBV particle entry into the hepatocyte. To establish this cell line, the middle S open reading frame (ORF), with a promoter located in the 5' region and enhancer located in the 3' region, was cloned downstream from the metallothionine (MT) promoter of the OT1529 vector. In this vector, expression of the middle S protein was constructed to be regulated by its own promoter and enhancer. Expression of the large S protein which contains the preS1 region in addition to the middle S protein was designed to be regulated by the MT promoter. When extracts of OTHBVS cells were examined with an S protein detection kit (RPHA, Korea Green Cross Co.), an S protein was detected. Total mRNA of OTHBVS cell examined by northern blot analysis with an S ORF probe revealed small/middle S transcripts (2.1 kb). When the MT promoter was induced by Zn, large S transcripts (2.4 kb) were detected. The GP36 and GP33 middle S proteins were presumably detected, but large S proteins were not detected by immunostain analysis using anti-preS2 antibody.

  • PDF

Possible Mechanism Underlying the Antiherpetic Activity of a Proteoglycan Isolated from the Mycelia of Ganoderma lucidum in Vitro

  • Li, Zubing;Liu, Jing;Zhao, Yifang
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • GLPG (Ganoderma lucidum proteoglycan) was a bioactive fraction obtained by the liquid fermentation of the mycelia of Ganoderma lucidum, EtOH precipitation, and DEAE-cellulose column chromatography. GLPG was a proteoglycan with a carbohydrate: protein ratio of 10.4: 1. Its antiviral activities against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) were investigated using a cytopathic inhibition assay. GLPG inhibited cell death in a dose-dependent manner in HSV-infected cells. In addition, it had no cytotoxic effect even at 2 mg/ml. In order to study the mode of action of the antiviral activity of GLPG, cells were treated with GLPG before, during, and after infection, and viral titer in the supernatant of cell culture 48 h post-infection was determined using a $TCID_{50}$ assay. The antiviral effects of GLPG were more remarkable before viral treatment than after treatment. Although the precise mechanism has yet to be defined, our work suggests that GLPG inhibits viral replication by interfering with the early events of viral adsorption and entry into target cells. Thus, this proteoglycan appears to be a candidate anti-HSV agent.

Efficient Expression of hG-CSF cDNA from an IRES-Dependent Bicistronic Vector Targeted to Mammary Gland of Transgenic Mice

  • Oh, Keon-Bong;Sung, Yoon-Young;Lee, Chul-Sang;Lee, Kyu-Seung;Lee, Kyung-Kwang
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.87-87
    • /
    • 2002
  • Previously, we observed high level expression of goat β-casein/genomic hGH fusion gene in mammary gland of transgenic mice. To develop an expression vector to make a human granulocyte-colony stimulating factor (hG-CSF) protein efficiently produced in milk of transgenic animals, we designed a new bicistronic vector using the goat β-casein/genomic hGH fusion gene as regulation sequences for expression and internal ribosome entry site (IRES) as a mediator for second gene expression. This vector was constructed by insertion of encephalomyocarditis virus (EMCV) IRES-dependent second gene region coupled with hG-CSF cDNA into 3' untranslated region of an intact hGH gene. By microinjcetion, four transgenic mice were generated and three of them transmitted the bicistronic vector to their progeny. (omitted)

  • PDF

Structural Studies of Peptide Binding Interaction of HCV IRES Domain IV

  • Shin, Ji Yeon;Bang, Kyeong-Mi;Song, Hyun Kyu;Kim, Nak-Kyoon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.109-113
    • /
    • 2017
  • The hepatitis C virus (HCV) internal ribosome entry site (IRES) is an RNA structure located in the 5'-UTR of the HCV RNA genome. The HCV IRES consists of four domains I, II, III, and IV, where domains II - IV are recognized by 40S ribosomal subunit and the domain III is bound to eukaryotic initiation factor 3 (eIF3) for translation initiation. Here, we have characterized the tertiary interaction between an L-/K- rich peptide and the HCV IRES domain IV. To probe the peptide binding interface in RNA, we synthesized $^{13}C$- and $^{15}N$-double labeled RNA and the binding site was identified by using the chemical shift perturbation (CSP) NMR methods. Our results showed that the peptide binds to the upper stem of the IRES domain IV, indicating that the tertiary interaction between the IRES domain IV and the peptide would disrupt the initiation of translation of HCV mRNA by blocking the start codon exposure. This study will provide an insight into the new peptide-based anti-viral drug design targeting HCV IRES RNA.

Packed PE File Detection for Malware Forensics (악성코드 포렌식을 위한 패킹 파일 탐지에 관한 연구)

  • Han, Seung-Won;Lee, Sang-Jin
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.555-562
    • /
    • 2009
  • In malware accident investigation, the most important thing is detection of malicious code. Signature based anti-virus softwares have been used in most of the accident. Malware can easily avoid signature based detection by using packing or encryption method. Because of this, packed file detection is also important. Detection methods can be divided into signature based detection and entropy based detection. Signature based detection can not detect new packing. And entropy based detection has a problem with false positive. We provides detection method using entropy statistics of entry point section and 'write' properties of essential characteristic of packed file. And then, we show packing detection tool and evaluate its performance.

HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System

  • Shui, Jr-Wen;Kronenberg, Mitchell
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.67-72
    • /
    • 2014
  • The herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor receptor superfamily (TNFRSF), and therefore it is also known as TNFRSF14 or CD270 (1,2). In recent years, we have focused on understanding HVEM function in the mucosa of the intestine, particularly on the role of HVEM in colitis pathogenesis, host defense and regulation of the microbiota (2-4). HVEM is an unusual TNF receptor because of its high expression levels in the gut epithelium, its capacity to bind ligands that are not members of the TNF super family, including immunoglobulin (Ig) superfamily members BTLA and CD160, and its bi-directional functionality, acting as a signaling receptor or as a ligand for the receptor BTLA. Clinically, Hvem recently was reported as an inflammatory bowel disease (IBD) risk gene as a result of genome wide association studies (5,6). This suggests HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense and the microbiota. Consistent with this, using mouse models, we have revealed how HVEM is involved in colitis pathogenesis, mucosal host defense and epithelial immunity (3,7). Although further studies are needed, our results provide the fundamental basis for understanding why Hvem is an IBD risk gene, and they confirm that HVEM is a mucosal gatekeeper with multiple regulatory functions in the mucosa.

Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study

  • Gadhe, Changdev G.;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2466-2472
    • /
    • 2013
  • Human immunodeficiency virus type-1 (HIV-1) is a causative agent of Acquired immunodeficiency syndrome (AIDS), which has affected a large population of the world. Viral envelope glycoprotein (gp120) is an intrinsic protein for HIV-1 to enter into human host cells. Molecular docking guided molecular dynamics (MD) simulation was performed to explore the interaction mechanism of heterobiaryl derivative with gp120. MD simulation result of inhibitor-gp120 complex demonstrated stability. Our MD simulation results are consistent with most of the previous mutational and modeling studies. Inhibitor has an interaction with the CD4 binding region. Van der Waals interaction between inhibitor and Val255, Thr257, Asn425, Met426 and Trp427 were important. This preliminary MD model could be useful in exploiting heterobiaryl-gp120 interaction in greater detail, and will likely to shed lights for further utilization in the development of more potent inhibitors.

Analysis of Covid-19, Tourism, Stress Keywords Using Social Network Big Data_Semantic Network Analysis

  • Yun, Su-Hyun;Moon, Seok-Jae;Ryu, Ki-Hwan
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.204-210
    • /
    • 2022
  • From the 1970s to the present, the number of new infectious diseases such as SARS, Ebola virus, and MERS has steadily increased. The new infectious disease, COVID-19, which began in Wuhan, Hubei Province, China, has pushed the world into a pandemic era. As a result, Countries imposed restrictions on entry to foreign countries due to concerns over the spread of COVID-19, which led to a decrease in the movement of tourists. Due to the restriction of travel, keywords such as "Corona blue" have soared and depression has increased. Therefore, this study aims to analyze the stress meaning network of the COVID-19 era to derive keywords and come up with a plan for a travel-related platform of the Post-COVID 19 era. This study conducted analysis of travel and stress caused by COVID-19 using TEXTOM, a big data analysis tool, and conducted semantic network analysis using UCINET6. We also conducted a CONCOR analysis to classify keywords for clustering of words with similarities. However, since we have collected travel and stress-oriented data from the start to the present, we need to increase the number of analysis data and analyze more data in the future.

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.