• Title/Summary/Keyword: virulence gene

Search Result 318, Processing Time 0.026 seconds

Bacterial Quorum Sensing and Anti-Quorum Sensing (세균의 적정밀도 인식을 통한 신호전달 및 신호전달 차단 연구)

  • 박순양;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Many bacteria monitor their population density and control the expression of specialized gene sets in response to bacterial cell density based on a mechanism referred to as quorum sensing. In all cases, quorum sensing involves the production and detection of extracellular signaling molecules, auto inducers, as which Gram-negative and Gram-positive bacteria use most prevalently acylated homoserine lactones and processed oligo-peptides, respectively. Through quorum-sensing communication circuits, bacteria regulate a diverse array of physiological functions, including virulence, symbiosis, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. Many pathogens have evolved quorum-sensing mechanisms to mount population-density-dependent attacks to over-whelm the defense responses of plants, animals, and humans. Since these AHL-mediated signaling mechanisms are widespread and highly conserved in many pathogenic bacteria, the disruption of quorum-sensing system might be an attractive target for novel anti-infective therapy. To control AHL-mediated pathogenicity, several promising strategies to disrupt bacterial quorum sensing have been reported, and several chemicals and enzymes have been also investigated for years. These studies indicate that anti-quorum sensing strategies could be developed as possible alternatives of antibiotics.

Proper NMR methods for studying RNA thermometers

  • Kim, Won-Je;Kim, Nak-Kyoon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.143-148
    • /
    • 2015
  • In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5'-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the $37^{\circ}C$ within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.

Control of Pierce's Disease through Degradation of Xanthan Gum

  • Lee, Seung-Don;Donald A. Cooksey
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The diseases caused by Xylella fastidiosa are associated with aggregation of the bacteria m xylem vessels, formation of a gummy matrix and subsequent blockage of water uptake. In the closely related pathogen, Xanthomonas campestris, xanthan gum is known to be an important virulence factor, probably contributing to bacterial adhesion, aggregation and plugging of xylem. Xanthan gum, produced by X. campestris, is an extra-cellular polysaccharide consisting of a cellulose backbone ($\bate$-1,4-linked D-glucose) with trisaccharide side chains composed of mannose, glucuronic acid and mannose attached to alternate glucose residues in the backbone. We had constructed a mutant of X. campestris lacking gumI gene that is responsible for adding the terminal mannose for producing modified xanthan gum which is similar to xanthan gum fromX. fastidiosa. The modified xanthan gum degrading endgphytic bacterium Acineto-bacter johnsonii GX123 isolated from the oleander infected with leaf scorch disease.

Phytotoxins of Pseudomonas syringae and PCR Primers for Detection of Phytotoxin-Producing Strains (Pseudomonas syringae의 식물독소와 독소 생산 균주의 검출을 위한 PCR Primer)

  • 정재성;한효심;고영진
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.123-133
    • /
    • 2001
  • Many pathovars of the species Pseudomonas syringae are known to produce different phytotoxins as secondary metabolites. Although phytotoxins generally enhance the virulence of P. syringae, they are not required for pathogenesis. Among the phytotoxins produced by P. syringae, lipodepsipeptides, coronatine, phaseolotoxin, and tabtoxin are the most well-known toxins which have been intensively studied for their structure, mode of action, biosynthesis, and regulation. A polymerase chain reaction (PCR) technique that amplifies a segment of the phytotoxin gene cluster using a primer set has been developed in recent years. This method offers the advantages of speed and sensitivity compared to the approaches based on physiological and biochemical methods. PCR detection of genes involved in the production of toxins could be exploited for early diagnosis of plant diseases caused by P. syringae pathovars.

  • PDF

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

Specific detection of salmonella enteritidis using polymerase chain reaction method (PCR을 이용한 salmonella enteritidis의 특이적 검출)

  • 조미영;여용구;김영섭;이정학;이병동
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2000
  • Salmonella enteritidis is the most prevalent etiologic agents of foodborne acute gastroenteritis. Direct isolation and identification of S enteritidis are time consuming work and not so highly sensitive. This study was conducted to develop for the specific detection of S enteritidis using polymerase chain reaction(PCR). PCR primers were selected to amplify a 351-base pair(bp) DNA fragment from the salmonella plasmid virulence A(spv A) gene of S enteritidis. With the primers, 351 bp DNA products were amplified from S enteritidis but not from other B, D, Cl serogroup Salmonella spp. It was sensitive to detect up to 40 pg of template DNA by agarose gel electrophoresis. This PCR assay is very rapid and specific method and less time consuming than the standard bacteriological methods.

  • PDF

Quorum Sensing and Quorum-Quenching Enzymes

  • Dong, Yi-Hu;Zhang, Lian-Hui
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.101-109
    • /
    • 2005
  • To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

Gene Expression Profiles Following High-Dose Exposure to Gamma Radiation in Salmonella enterica serovar Typhimurium

  • Lim, Sangyong;Jung, Sunwook;Joe, Minho;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.111-119
    • /
    • 2008
  • Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

Complete genome sequence of Clostridium perfringens B20, a bacteriocin-producing pathogen

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1468-1472
    • /
    • 2021
  • Clostridium perfringens B20 was isolated from chicken feces collected from a local farm associated with Chung-Ang University (Anseong, Korea). The whole genome of C. perfringens B20 was sequenced using the PacBio RS II platform and assembled de novo. The genome is 2,982,563 bp long and assembled in two contigs. Annotation analyses revealed 2,668 protein-coding sequences, 30 rRNA genes, and 94 tRNA genes, with 28.2% G + C (guanine + cytosine) content. In silico genomic analysis revealed the presence of genes encoding a class IId bacteriocin, lactococcin A, and associated ABC transporter and immunity proteins, as well as a putative bacteriocin gene.