• 제목/요약/키워드: virulence gene

검색결과 318건 처리시간 0.023초

A Large Genomic Deletion in Gibberella zeae Causes a Defect in the Production of Two Polyketides but not in Sexual Development or Virulence

  • Lee Sun-Hee;Kim Hee-Kyoung;Hong Sae-Yeon;Lee Yin-Won;Yun Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.215-221
    • /
    • 2006
  • Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of cereal crops. This fungus produces a broad range of secondary metabolites, including polyketides such as aurofusarin (a red pigment) and zearalenone (an estrogenic mycotoxin), which are important mycological characteristics of this species. A screen of G. zeae insertional mutants, generated using a restriction enzyme-mediated integration (REMI) procedure, led to the isolation of a mutant (Z43R606) that produced neither aurofusarin nor zearalenone yet showed normal female fertility and virulence on host plants. Outcrossing analysis confirmed that both the albino and zearalenone-deficient mutations are linked to the insertional vector in Z43R606. Molecular characterization of Z43R606 revealed a deletion of at least 220 kb of the genome at the vector insertion site, including the gene clusters required for the biosynthesis of aurofusarin and zearalenone, respectively. A re-creation of the insertional event of Z43R606 in the wild-type strain demonstrated that the 220-kb deletion is responsible for the phenotypic changes in Z43R606 and that a large region of genomic DNA can be efficiently deleted in G. zeae by double homologous recombination. The results showed that 52 putative genes located in the deleted genomic region are not essential for phenotypes other than the production of both aurofusarin and zearalenone. This is the first report of the molecular characterization of a large genomic deletion in G. zeae mediated by the REMI procedure.

Pathogenic Characteristics and Antibiotic Resistance of Bacterial Isolates from Farmstead Cheeses

  • Jang, Kyeonga;Lee, Jeeyeon;Lee, Heeyoung;Kim, Sejeong;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan;Lee, Soomin
    • 한국축산식품학회지
    • /
    • 제38권1호
    • /
    • pp.203-208
    • /
    • 2018
  • The objective of this study was to investigate the pathogenicity and antimicrobial resistance of foodborne pathogens isolated from farmstead cheeses. Twenty-seven isolates, including 18 Bacillus cereus, two Escherichia coli, and seven Staphylococcus aureus, were subjected to polymerase chain reaction (PCR) to detect virulence genes and toxin genes, and the antibiotic resistances of the isolates were determined. All E. coli isolates were determined by PCR to be non-pathogenic. Among the 18 B. cereus isolates, 17 isolates (94.4%) were diarrheal type, as indicated by the presence of nheA, entFM, hbIC, cytK and bceT genes, and one isolate (5.6%) was emetic type, based on the presence of the CER gene. Among the seven S. aureus isolates, three (42.9%) had the mecA gene, which is related to methicillin-resistance. Most B. cereus isolates (94.7%) showed antibiotic resistance to oxacillin and penicillin G, and some strains also showed resistance to ampicillin (26.3%), erythromycin (5.3%), tetracycline (10.5%), and vancomycin (5.3%). These results indicate that microbial food safety measures for farmstead cheese must be implemented in Korea because antibiotic resistant foodborne pathogens, with resistance even to vancomycin, harboring virulence genes were found to be present in the final products of farmstead cheese.

Characterization of Pyrenophora tritici-repentis (Tan Spot of Wheat) Races in Baltic States and Romania

  • Abdullah, Sidrat;Sehgal, Sunish Kumar;Ali, Shaukat;Liatukas, Zilvinas;Ittu, Mariana;Kaur, Navjot
    • The Plant Pathology Journal
    • /
    • 제33권2호
    • /
    • pp.133-139
    • /
    • 2017
  • Tan spot, caused by the fungus Pyrenophora tritici-repentis, is economically important foliar disease in Latvia, Lithuania, and Romania; however, race structure from Baltic States and Romania is not known. In this study, we performed genotypic and phenotypic race characterization of a large collection of P. tritici-repentis isolates from these countries to determine race structure and utilize this information for better disease management and breeding wheat for tan spot resistance. We characterized 231 single spore isolates from Latvia (n = 15), Lithuania (n = 107), and Romania (n = 109) for Ptr ToxA and Ptr ToxB genes using two genes specific primers. A subset (139) of 231 isolates were further characterized for their race structure by inoculating them individually on tan spot wheat differentials set. Majority (83%) of the 231 isolates amplified Ptr ToxA gene suggesting prevalence of race 1 and 2. Further, phenotypic characterization of 139 isolates also showed wide prevalence of races 1 (68%), 2 (8%), 3 (11%), and 4 (5%) were also identified from Baltic States as well as Romania. Eighteen of the isolates (13%) did not seem to be of any of the eight known races as they lacked Ptr ToxA gene but they behaved like either race 1 or race 2, suggesting possibility of novel toxins in these isolates as their virulence tools.

Agrobacterium을 이용한 고추의 Transient Expression 시스템 (Development of an Agrobacterium-mediated Transient Expression System for Intact Leaves of Chili Pepper)

  • 성은수;정영희;최도일
    • Journal of Plant Biotechnology
    • /
    • 제31권3호
    • /
    • pp.185-190
    • /
    • 2004
  • Agrobacterium을 이용한 GUS 유전자를 효과적으로 발현시키기 위하여 수행되어진 실험 결과를 요약하면 다음과 같다. 박테이라 농도별 실험을 수행한 결과 균의 전처리 배양 농도 O $D_{600nm}$ 0.3일때 원심분리한 후 얻어진 균을 희석한 후의 최종 농도는 O $D_{600nm}$ 0.8로 맞춘 실험 처리구에서 GUS 유전자 발현율이55%로 가장 높게 나타났다. 병원성 유도 배지 내에 Acetosyringone (AS)이 첨가되지 않은 경우 GUS 유전자가 발현된 고추 잎을 얻을 수 없었으나, 200$\mu$M을 첨가했을 때 90%의 가장 높은 GUS 유전자 발현율을 나타내어 많은 수의 GUS spots을 관찰할 수 있었다. Agrobacterium에 의한 고추 잎의 감염 정도를 조사한 바 Agrobacterium으로 감염시킨지 3일째부터는 박테리아 에한 감염 정도가 심해져서 GUS 유전자 발현 정도가 약해지므로 Agrobacterium으로 감염시킨지 2일째 되었을 때 GUS 유전자 발현이 가장 강하게 나타난 것을 확인하였다. 이 같은 결과는 박테리아에 의한 감염이 일어난지 3일째 부터는 식물체의 감염부위 고사를 일으키는 것과 관련된 것으로 보인다.

Identification of the Vibrio vulnificus fexA Gene and Evaluation of its Influence on Virulence

  • JU HYUN-MOK;HWANG IN-GYUN;WOO GUN-JO;KIM TAE SUNG;CHOI SANG HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1337-1345
    • /
    • 2005
  • Vibrio vulnificus is the causative agent of foodborne diseases such as gastroenteritis and life-threatening septicemia. Microbial pathogenicity is a complex phenomenon in which expression of numerous virulence factors is frequently controlled by a common regulatory system. In the present study, a mutant exhibiting decreased cytotoxic activity toward intestinal epithelial cells was screened from a library of V. vulnificus mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, an open reading frame, fexA, a homologue of Escherichia coli areA, was identified and cloned. The nucleotide and deduced amino acid sequences of the fexA were analyzed, and the amino acid sequence of FexA from V. vulnificus was $84\%\;to\;97\%$ similar to those of AreA, an aerobic respiration control global regulator, from other Enterobacteriaceae. Functions of the FexA were assessed by the construction of an isogenic mutant, whose fexA gene was inactivated by allelic exchanges, and by evaluating its phenotype changes in vitro and in mice. The disruption of fexA resulted in a significant alteration in growth rate under aerobic as well as anaerobic conditions. When compared to the wild-type, the fexA mutant exhibited a substantial decrease in motility and cytotoxicity toward intestinal epithelial cell lines in vitro. Furthermore, the intraperitoneal $LD_{50}$ of the fexA mutant was approximately $10^{1}-10^{2}$ times higher than that of parental wild-type. Therefore, it appears that FexA is a novel global regulator controlling numerous genes and contributing to the pathogenesis as well as growth of V. vulnificus.

유두상 갑상선암에서 nm23, Bcl2, Bax 발현도의 임상적 의의 (Significance of nm23, Bcl2 and Bax Expression in Papillary Thyroid Carcinoma)

  • 정웅윤;이해경;백소야;박정수
    • 대한두경부종양학회지
    • /
    • 제16권2호
    • /
    • pp.161-166
    • /
    • 2000
  • Objective: The nm23 gene has been identified as a potential metastasis suppressor gene in various human neoplasms. Both Bcl-2, which promotes cell survival, and Bax, which promotes cell death, have been considered as major factors in controlling the apoptotic pathway. This study was carried out to determine whether these markers are useful in distinguishing potential intrinsic differences in tumor virulence of papillary thyroid cancers. Material and Method: The expressions of nm23, Bcl-2 and Bax have been evaluated using immunohistochemical techniques in 100 pure papillary thyroid cancers and 20 metastatic lymphnodes. The intensity of immnunoreactivity was graded on arbitrary four point scale(grade 0 or 1 : negative reactivity, grade 2 or 3 positive reactivity). The immunoreactivities were analyzed in relation to TNM atage, AMES score, local recurrence and distant metastasis, and that of metastatic LNs was compared with the tumors. Results: The expression of Bcl-2 and bax did not show any statistical differences by TNM stage, AMES score, recurrence, distant metastasis and also between the tumor and metastatic LN. However, the nm23 showed higher expression of Ki67 in distant metastasis than in control group and in metastatic LNs than in the tumors(p<0.05). Conclusion: Although the expression of Bcl-2 and Bax protein showed no correlation with clinical parameters representing tumor virulence, the nm23 expression could be an useful prognostic factor, especially in predicting nodal or distant metastasis in papillary thyroid cancer.

  • PDF

Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae

  • Oh, Young Taek;Lee, Kang-Mu;Bari, Wasimul;Kim, Hwa Young;Kim, Hye Jin;Yoon, Sang Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.627-636
    • /
    • 2016
  • The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

Molecular differentiation of Korean Newcastle disease virus (NDV) by restriction enzyme analysis and pathotype-specific RT-PCR

  • Kwon, Hyuk-Joon;Cho, Sun-Hee;Kim, Sun-Joong
    • 대한수의학회지
    • /
    • 제46권4호
    • /
    • pp.371-379
    • /
    • 2006
  • Newcastle disease virus (NDV) is a single-stranded negative sense RNA virus, which has been classified as a member of the Avulavirus genus of the Paramyxoviridae family. It is also one of the most important pathogens in the poultry industry. The glycoproteins, fusion (F) and hemagglutinin-neuraminidase (HN), determine the virulence of NDV, and the relevant molecular structures have already been determined. NDV isolates differ in terms of virulence, and at least 2 of 9 genotypes (I-IX) have been shown to co-circulate. Therefore, it is clearly important to differentiate between vaccine strains and field isolates. In vivo pathogenicity tests have been the standard protocol for some time, but molecular methods appear preferable in terms of the rapidity of diagnosis, as well as animal welfare concerns. In this study, we have designed primer sets from HN gene for phylogenetic analysis and restriction enzyme analysis, and from F gene for pathotype-specific RT-PCR. Via the combination of 2 methods, 106 Korean NDV isolates obtained from 1980 to 2005 were differentiated into vaccine strains, and virulent genotypes VI and VII. The genotype VI viruses were only rarely isolated after 1999, and genotype VII, after it was initially isolated from poultry in 1995, recurred in 2000, and then became the main NDV constituting a threat to the Korean poultry industry.

자돈 분변 유래 병원성 대장균의 병원성 인자 및 항생제 내성 양상 (Virulence factors and antimicrobial resistance patterns of pathogenic Escherichia coli isolated from fecal samples of piglets)

  • 신현숙;김근호;서진성;김영욱;임숙경;정병열
    • 한국동물위생학회지
    • /
    • 제46권1호
    • /
    • pp.35-45
    • /
    • 2023
  • Pathogenic Escherichia coli is the cause of a wide range of diseases in pigs, including diarrhea, edema disease, and septicemia. Diarrhea caused E. coli may result in significant economic losses, making pathogenic E. coli an important pathogen for the swine industry. This study investigated the prevalence of virulence factor genes, antimicrobial resistance phenotypes, and resistance genes in E. coli isolated from feces of piglets in Korea between 2017 and 2020. As a result, 119 pathogenic E. coli isolates were obtained from 601 fecal samples. The F4 adhesin gene and the STb enterotoxin gene were commonly present in E. coli isolated from diarrhea samples. The dominant virulotypes of isolates from diarrhea samples were STb, Stx2e, and F4:LT:STb. More than 80% of the screened isolates were resistant to ampicillin, sulfisoxazole, chloramphenicol, or tetracycline. To confirm the resistance mechanisms for β-lactam or quinolone, we investigated the genotypic factors of resistance. Each of the ceftiofur-resistant E. coli produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-27, and blaCTX-M-55. And all ciprofloxacin-resistant E. coli harbored mutations in quinoloneresistance-determining-regions. In addition, some of the ciprofloxacin-resistant E. coli contained the plasmid-mediated-quinolone-resistance genes such as qepA, qnrB1, or qnrD. This study has confirmed that the F4 fimbria and the STb enterotoxin are the most predominant in pathogenic E. coli isolated from piglets with diarrhea in Korea and there is a great need for responsible and prudent use of antimicrobials to treat colibacillosis.

가덕도 연안 해수에서 Vibrio vulnificus의 분포 및 분리균주의 병원성 유전자 특성 (Distribution and Molecular Characteristics of Vibrio vulnificus Isolated from Seawater Along the Gadeok Island Coast)

  • 오희경;정희진;김영목
    • 한국수산과학회지
    • /
    • 제53권5호
    • /
    • pp.688-693
    • /
    • 2020
  • Vibrio vulnificus is a Gram-negative marine bacterium known to cause septicemia. This study was conducted to investigate the distribution of V. vulnificus along the coast of Gadeok Island in Korea and to determine the molecular characteristics of isolated strains sampled between March and November 2019 from seawater. The strains were mostly detected between July and September, when the average water temperature and average salinity were 22.2-26.2℃ and 14.2-29.9 psu, respectively. V. vulnificus was not detected in seawater below 15℃. In September, the highest population of V. vulnificus was observed at 2,100 MPN (most probable number)/100 mL, attributable to decreased salinity from heavy rains. In addition, the detection rate of V. vulnificus was higher at the sampling station near the Nakdong River. Virulence-related genes were also identified among the isolates, such as vvhA (97.1%), viuB (44.1%), and vcgC (57.4%). In particular, viuB and vcgC were only observed in V. vulnificus isolated from June to September, when the detection rate was high and water temperature was above 20℃, suggesting the role of seasonal characteristics.