• Title/Summary/Keyword: virulence gene

Search Result 316, Processing Time 0.023 seconds

A Gene Encoding Phosphatidyl Inositol-specific Phospholipase C form Cryphonectria parasitica Modulates the Hypoviral-modulated Laccase1 Expression

  • Kim, Dae-Hyuk
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.159-161
    • /
    • 2005
  • Hypovirus infection of the chestnut blight fungus Cryphonectria parasitica is a useful model system to study the hypoviral regulation of fungal gene expression. The hypovirus is known to downregulate the fungal laccase1 (lac 1), the modulation of which is tightly governed by the inositol triphosphate ($IP_3$) and calcium second messenger system in a virus-free strain. We cloned the gene cplc1 encoding a phosphatidyl inositol-specific phospholipase C (PLC), in order to better characterize the fungal gene regulation by hypovirus. Sequence analysis of the cplc1 gene indicated that the protein product contained both the X and Y domains, which are the two conserved regions found in all known PLCs, with a 133 amino acid extension between the 2nd ${\beta}$-strand and the ${\alpha}$-helix in the X domain. In addition, the gene organization appeared to be highly similar to that of a ${\delta}$ type PLC. Disruption of the cplc1 gene resulted in slow growth and produced colonies characterized by little aerial mycelia and deep orange in color. In addition, down regulation of lac1 expression was observed. However, temperature sensitivity, osmosensitivity, virulence, and other hypovirulence-associated characteristics did not differ from the wild-type strain. Functional complementation of the cplc1-null mutant with the PLC1 gene from Saccharomyces cerevisiae restored lac1 expression, which suggests that the cloned gene encodes PLC activity. The present study indicates that the cplc1 gene is required for appropriate mycelial growth, and that it regulates the lac1 expression, which is also modulated by the hypovirus. Although several PLC genes have been identified in various simple eukaryotic organisms, the deletion analysis of the cplc1 gene in this study appears to be the first report on the functional analysis of PLC in filamentous fungi.

  • PDF

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

A Novel cry2Ab Gene from the Indigenous Isolate Bacillus thuringiensis subsp. kurstaki

  • Sevim, Ali;Eryuzlu, Emine;Demirbag, Zihni;Demir, Ismail
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2012
  • A novel cry2Ab gene was cloned and sequenced from the indigenous isolate of Bacillus thuringiensis subsp. kurstaki. This gene was designated as cry2Ab25 and its sequence revealed an open reading frame of 1,902 bp encoding a 633 aa protein with calculated molecular mass of 70 kDa and pI value of 8.98. The amino acid sequence of the Cry2Ab25 protein was compared with previously known Cry2Ab toxins, and the phylogenetic relationships among them were determined. The deduced amino acid sequence of the Cry2Ab25 protein showed 99% homology to the known Cry2Ab proteins, except for Cry2Ab10 and Cry2Ab12 with 97% homology, and a variation in one amino acid residue in comparison with all known Cry2Ab proteins. The cry2Ab25 gene was expressed in Escherichia coli BL21(DE3) cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Cry2Ab25 protein is about 70 kDa. The toxin expressed in BL21(DE3) exhibited high toxicity against Malacosoma neustria and Rhagoletis cerasi with 73% and 75% mortality after 5 days of treatment, respectively.

Regulatory Mutations for Anaerobic Inducible Gene Expression in Salmonella typhimurium

  • Soo, Bang;Lee, Yun-Joung;Koh, Sang-Kyun;An, Chung-Sun;Lee, Yung-Nok;Park, Yong-Keun
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.347-354
    • /
    • 1992
  • New regulatory, loci which participate in the regulation of anaerobic inducible gene expression in Salmonella typhimurium were identified. We observed the regulatory network of new regulator mutations to various anaerobic inducible gene (1). Some anaerobic inducible lac fusions were also induced at low pH condition which was severe environment to withstand for its virulence at the place like phagolysosome. Sic oxygen-regulated regulatory mutants (oxr) isolated by Tn10 mutagenesis were divided into two groups. Five of them were found to show negative effect on the regulation of anaerobic gene expression, while on e showed positive effect on the regulation. Genetic loci of four oxr were identified with 54 Mud-P22 lysogens covering the whole chromosome of S. typhimurium, in the nearby region of map unit 87 min (oxr101), 63 min (oxr104), 97 min (oxr 105), and 57 min (oxr 106), respectively. Two oxr mutants were subjected to two-dimensional polyacrylamide electrophoretic analysis of anaerobic inducible proteins for searching the control circuitry of our oxr mutants.

  • PDF

Comparative Analysis of Growth-Phase-Dependent Gene Expression in Virulent and Avirulent Streptococcus pneumoniae Using a High-Density DNA Microarray

  • Ko, Kwan Soo;Park, Sulhee;Oh, Won Sup;Suh, Ji-Yoeun;Oh, TaeJeong;Ahn, Sungwhan;Chun, Jongsik;Song, Jae-Hoon
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.82-88
    • /
    • 2006
  • The global pattern of growth-dependent gene expression in Streptococcus pneumoniae strains was evaluated using a high-density DNA microarray. Total RNAs obtained from an avirulent S. pneumoniae strain R6 and a virulent strain AMC96-6 were used to compare the expression patterns at seven time points (2.5, 3.5, 4.5, 5.5, 6.0, 6.5, and 8.0 h). The expression profile of strain R6 changed between log and stationary growth (the Log-Stat switch). There were clear differences between the growth-dependent gene expression profiles of the virulent and avirulent pneumococcal strains in 367 of 1,112 genes. Transcripts of genes associated with bacterial competence and capsular polysaccharide formation, as well as clpP and cbpA, were higher in the virulent strain. Our data suggest that late log or early stationary phase may be the most virulent phase of S. pneumoniae.

Involvement of a Polyketide Synthetase ClPKS18 in the Regulation of Vegetative Growth, Melanin and Toxin Synthesis, and Virulence in Curvularia lunata

  • Gao, Jin-Xin;Chen, Jie
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.597-601
    • /
    • 2017
  • The clpks18 gene was first cloned and identified in Curvularia lunata. It contains 6571 base pairs (bp) and an 6276 bp open reading frame encoding 2091 amino acids. The ClPKS18 deletion mutant displayed an albino phenotype, and almost lost the ability to product 5-(hydroxymethyl) furan-2-carboxylate (M5HF2C) toxin, implying that clpks18 gene in C. lunata is not only involved in 1,8-dihydroxynaphthalene melanin synthesis, but also relatively associated with M5HF2C toxin biosynthesis of the pathogen. The pathogenicity assays revealed that ${\Delta}ClPKS18$ was impaired in colonizing the maize leaves, which corresponds to the finding that ClPKS18 controls the production of melanin and M5HF2C in C. lunata. Results indicate that ClPKS18 plays a vital role in regulating pathogenicity of in C. lunata.

Deletion Mutageneses of the Helicobacter pylori Urease Accessory Genes

  • Lee, Mann-Hyong;Sung, Jae-Young
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 1999
  • Helicobacter pylori is the etiologic agent of human gastritis and peptic ulceration and produces urease as the major protein component on its surface. H. pylori urease is known to serve as a major virulence factor and a potent immunogen. Deletion mutageneses were performed in the H. pylori urease accessory genes by using combinations of restriction enzymes and other DNA modifying enzymes in order to assess the function of these accessory gene products in the expression of the active urease. Selective disruptions in the accessory gene regions resulted in complete abolishment of the urease activity, which is consistent with other bacterial ureases. Interestingly, deletions in ureE-containing regions caused reduced expression of the structural enzyme subunits.

  • PDF

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans

  • Choi, Yoojeong;Do, Eunsoo;Hu, Guanggan;Caza, Melissa;Horianopoulos, Linda C.;Kronstad, James W.;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1142-1148
    • /
    • 2020
  • Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.

Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression

  • Jiang, Lanxiang;Li, Hongen;Wang, Laiying;Song, Zexin;Shi, Lei;Li, Wenhua;Deng, Xuming;Wang, Jianfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.596-602
    • /
    • 2016
  • Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections.