• Title/Summary/Keyword: virulence factor

Search Result 198, Processing Time 0.033 seconds

Sclareol Protects Staphylococcus aureus-Induced Lung Cell Injury via Inhibiting Alpha-Hemolysin Expression

  • Ouyang, Ping;Sun, Mao;He, Xuewen;Wang, Kaiyu;Yin, Zhongqiong;Fu, Hualin;Li, Yinglun;Geng, Yi;Shu, Gang;He, Changliang;Liang, Xiaoxia;Lai, Weiming;Li, Lixia;Zou, Yunfeng;Song, Xu;Yin, Lizi
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Staphylococcus aureus (S. aureus) is a common gram-positive bacterium that causes serious infections in humans and animals. With the continuous emergence of methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting, and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with A549 epithelial cells, sclareol could protect the A549 cells at a final concentration of $8{\mu}g/ml$. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

Identification of an Entomopathogenic Bacterium, Serratia sp. ANU101, and Its Hemolytic Activity

  • Kim, Yong-Gyun;Kim, Keun-Seob;Seo, Ji-Ae;Shrestha, Sony;Kim, Hosanna-H.;Nalini, Madanagopal;Yi, Young-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.314-322
    • /
    • 2009
  • Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. Owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

Effect of Iron on Adherence and Cytotoxicity of Entamoeba histolytica to CHO Cell Monolayers

  • Lee, Jong-Weon;Park, Soon-Jung;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.1
    • /
    • pp.37-40
    • /
    • 2008
  • Iron is an essential element for almost all living organisms. The possible role of iron for growth, adherence and cytotoxicity of Entamoeba histolytica was evaluated in this study. The absence of iron from TYI-S-33 medium stopped amebic growth in vitro. However, iron concentrations in the culture media of 21.4-285.6 ${\mu}M$ did not affect the growth of the amebae. Although growth was not retarded at these concentrations, the adhesive abilities of E. histolytica and their cytotoxicities to CHO cell monolayer were correlated with iron concentration. Amebic adhesion to CHO cell monolayers was significantly reduced by low-iron ($24.6{\pm}2.1%$) compared with $62.7{\pm}2.8\;and\;63.1{\pm}1.4%$ of amebae grown in a normal-iron and high-iron media, respectively. E. histolytica cultured in the normal- and high-iron media destroyed $69.1{\pm}4.3%\;and\;72.6{\pm}5.7%$ of cultured CHO cell monolayers, but amebae grown in the low-iron medium showed a significantly reduced level of cytotoxicity to CHO cells ($2.8{\pm}0.2%$). Addition of divalent cations other than iron to amebic trophozoites grown in the low-iron medium failed to restore levels of the cytotoxicity. However, when E. histolytica grown in low-iron medium were transferred to normal-iron medium, the amebae showed completely restored cytotoxicity within 7 days. The result suggests that iron is an important factor in the adherence and cytotoxicity of E. histolytica to CHO cell monolayer.

GUS gene expression and plant regeneration via co-culturing with Agrobacterium in grapevine (Vitis vinifera) (Agrobacterium 공동배양을 이용한 포도 재분화율 향상과 GUS 유전자의 발현)

  • Kim, Se-Hee;Kim, Jeong-Hee;Kim, Ki-Ok;Do, Gyeong-Ran;Shin, Il-Sheob;Cho, Kang-Hee;Hwang, Hae-Seong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.308-314
    • /
    • 2011
  • Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. In this study, methods for Agrobacterium tumefaciens-mediated transformation and plant regeneration of grapevine (Vitis vinifera) were evaluated. Tamnara, Heukgoosul, Heukbosek, Rizamat were co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, GUS gene as reporter gene and resistance to kanamycin as selective agent. Seven percent of the maximum regeneration frequency was obtained from co-cultivated with explants from Rizamat with LBA4404 strain on selection medium with kanamycin. The addition of acetosyringone, 200 ${\mu}m$ in virulence induction step was a key factor for successful GUS reporter gene expression in grapevine transformation. Transgenic plants showed resistance to kanamycin and the GUS positive response in leaf ($T_0$) stem ($T_0$) and petiole ($T_0$).

Relation between the interval of supportive periodontal therapy and the prevalence of the subgingival microflora (유지치주치료기간과 치은연하세균 출현율의 관계)

  • Kim, Jin-Cheol;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • This study was performed to evaluate the relation between the interval of supportive periodontal therapy and the prevalence of the subgingival microflora. The subgingival plaques from 108 patients were used in the study. Control group were the patients with no periodontal treatment and test groups were assigned into 3 groups according to the period of recall check: group 1; 1-2 months, group 2; 3-4 months, group 3; 6months or more. The polymerase chain reaction (PCR) used for direct identification of periodontal pathogens (P. gingivalis, T. forsythensis, T. denticola) in subgingival plaque. The results of this study were as follows. 1. The prevalence of P. gingivalis, T. forsythensis, T. denticola in control group were 100%, 87%, 90%. 2. In clinical parameters such as plaque index, gingival index, bleeding on probing, control group was not significant different with group 1 but Significant different with group 2, group 3. 3. In group 1, the majority of P. gingivalis had type II fimA. 4. When group 3 were compared with group 1, the prevalence of P. gingivalis increased. But the prevalence of P. gingivalis with type II fimA, which have the virulence factor, decreased. 5. We were unable to find the correlation between P. gingivalis with type IV fimA and periodontal disease. 6. The prevalence of T. forsythensis, T. denticola in test group were 85%, 93% or more. From the above results, we were able to find the relation between the interval of supportive periodontal therapy and the prevalence of the subgingival microflora and the need of the strict supportive periodontal therapy to prevent recurrence of periodontal disease, because there were high prevalence of periodontal pathogens.

Isolation of Urease Inhibitory Compounds from Arecae Semen (빈랑자 (Arecae Semen)로부터 Urease 억제 활성 물질의 분리)

  • Ryu, Jei-Man;Jang, Hwan-Bong;Rho, Yang-Kook;Oh, Seong-Jun;Lee, Hyun-Yong;Leem, Moon-Jeong
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.1 s.140
    • /
    • pp.56-59
    • /
    • 2005
  • Urease plays an important role in the urea metabolism and the effect of urease activity on human and environment is enormous. For instance, urease acts as a virulence factor of the urinary and gastrointestinal tracts infections in human and animal, being involved in kidney stone formation, catheter encrusatation, pyelonephritis, ammonia encephalopathy, hepatic coma, and urinary tract infections. Widespread urease activity in soil induces a plant damage due to ammonia toxicity and pH increase. Therefore, urease activity regulation through urease inhibitors would lead to an enhanced efficiency of urea nitrogen uptake in plants and to the improved therapeutic strategies for ureolytic bacterial infections. To search for new inhibitory compounds on urease activity from herbs, MeOH extracts of herbs were screened. Among of them, the MeOH extracts of Areca catechu exhibited an excellent inhibitory effect on urease activity. Two compounds were isolated from the ethyl acetate fraction by the activity guided fractionation. Their chemical structures were identified as (+)-catechin(compound I) and allantoin(compound II) by spectroscopic evidence, respectively. Compound I showed a stronger inhibitory effect on urease activity than compound II.

Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

  • Park, Jaejin;Kong, Sunghyung;Kim, Seryun;Kang, Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.136-150
    • /
    • 2014
  • Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (${\Delta}Mofkh1$) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ${\Delta}Mohcm1$ exhibited reduced mycelial growth and conidial germination. Conidia of ${\Delta}Mofkh1$ and ${\Delta}Mohcm1$ were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (${\Delta}Mofox1$) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and MoHCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

Purification and Characterization of the Staphylococcus epidermidis Urease (Staphylococcus epidermidis urease의 정제 및 생화학적 특성에 관한 연구)

  • Min, Seon-Hee;Lee, Mann-Hyung
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.581-586
    • /
    • 2007
  • Staphylococcus epidermidis is a coagulase-negative, gram-positive bacterium that normally inhabits the human skin. S. epidermidis is also known to be an opportunistic pathogen in infections of various indwelling medical devices. This report describes purification and characterization of the urease of S. epidermidis urease, which may act as a virulence factor. The urease from S. epidermidis was purified 1,127 fold by using DEAE-Sepharose, Phenyl-Sepharose, Mono-Q and Superdex HR200 column chromatography. The specific activity of the purified enzyme was 993.8 U/mg. Michaelis constant($K_m$) of the enzyme was estimated to be 8.5 mM urea by using Lineweaver-Burke double reciprocal plot. The native molecular weight of the urease was shown to be 255 kD by using Superose 6HR gel filtration chromatography and the purified enzyme contained 2.2 nickel ions per catalytic unit. The overall stoichiometry of the enzyme subunits appears to be $(\alpha\beta\gamma)_3$, which is consistent with the enzymes from other bacteria sources.

Clarithromycin Resistance Prevalence and Icea Gene Status in Helicobacter Pylori Clinical Isolates in Turkish Patients with Duodenal Ulcer and Functional Dyspepsia

  • Baglan Peren H.;Bozdayi Gulendam;Ozkan Muhip;Ahmed Kamruddin;Bozdayi A. Mithat;Ozden Ali
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.409-416
    • /
    • 2006
  • Clarithromycin resistance in Helicobacter pylori is a principal cause of failure of eradication therapies, and its prevalence varies geographically. The IceA gene is a virulence factor associated with clinical outcomes. The objective of this study was to determine the current state of clarithromycin resistance prevalence, and to investigate the role of iceA genotypes in 87 Turkish adult patients (65 with functional dyspepsia and 22 with duodenal ulcer). A2143G and A2144G point mutations were tested by PCR-RFLP for clarithromycin resistance. Among the patients in the study, 28 patients were tested by agar dilution as well. Allelic variants of the iceA gene were identified by PCR. A total of 24 (27.6%) strains evidenced one of the mutations, either A2143G or A2144G. IceA1 was found to be positive in 28 of the strains (32.2 %), iceA2 was positive in 12 (13.8 %) and, both iceA1 and iceA2 were positive in 22 (25.3 %) strains. In conclusion, we discovered no relationships between iceA genotypes and functional dyspepsia or duodenal ulcer, nor between clarithromycin resistance and iceA genotypes. clarithromycin resistance appears to be more prevalent in Turkish patients.

Alterations in Cytoplasmic Membrane are Associated with the Bactericidal Activity of Thrombin-Induced Platelet Microbicidal Proteins in Oral Streptococci

  • Choi, Young-Eun;Cheong, Yong-Joon;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.125-130
    • /
    • 2005
  • Thrombin-induced platelet microbicidal proteins (tPMP) are antibacterial proteins released when platelets are stimulated by thrombin. It has been reported that tPMP has antibacterial activity against various bacterial species including causative agents of infective endocarditis. Most of the oral streptococci have resistance to the killing by tPMP and this fact may play an important role as a virulence factor in infective endocarditis. However, the susceptibility and resistance mechanism of oral streptococci for tPMP have not been revealed yet. In this study, the killing mechanism of tPMP for oral streptococci has been investigated. Streptococcus rattus BHT, a susceptible strain, and Streptococcus gordonii DL1, a resistant strain, have been used in this study. tPMP was isolated from platelet after stimulation with thrombin. Cell membrane depolarization was examined with 3,3'-dipropylthiodicarbocyanine iodide ($DiSC_3$), membrane potential-sensitive cyanine dye, by fluorescence spectrophotometry. The permeabilization of cell membrane by tPMP was investigated with propidium iodide (PI) by flow cytometry. tPMP susceptible S. rattus BHT showed the increase of the $DiSC_3$ fluorescence level meaning depolarization of cell membrane and increase of the uptake of PI which means permeabilization of cell membrane. However, tPMP resistant S. gordonii DLI did not show depolarization and permeabilization. These results indicate that the increasing depolarization and permeabilization of oral streptococcal cell membrane are associated with the bactericidal activity of tPMP.