• Title/Summary/Keyword: virulence change

Search Result 25, Processing Time 0.027 seconds

Effect of Gamma Irradiation on the Expression of Gene Endoding Metalloprotease in Vibrio vulnificus (감마선 조사가 vibrio vulnificus의 Metalloprotease 유전자 발현에 미치는 영향)

  • Jung, Jin-Woo;Lim, Sang-Yong;Joe, Min-Ho;Yun, Hye-Jeong;Hur, Jung-Mu;Kim, Dong-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • To check the microbiological safety with respect to increased virulence of surviving pathogens after irradiation, in this study, the transcriptional change of vvp gene encoding metalloprotease, which is one of the typical virulence factors of Vibrio mulnificus, was monitored by real-time PCR during the course of growth cycle after reinoculation of irradiated Vibrio. When V. vulnificus was exposed to a dose of 0.5 and 1 kGy, the lag period before growth resumption of sub-cultures became longer than non-irradiated counterpart as increase of irradiation dose. In the case of non-irradiated culture, the transcription of vvp was significantly activated at 15 h after inoculation, when bacterial growth reached the stationary phase, and the highest level of pretense activity (686 U/mL) was measured at the same time. Interestingly, vvp expression of irradiated Vibrio was turned up earlier than non-irradiated Vibrio during the mid log phase of growth, whereas these rapid induction of vvp expression from irradiated cells didn't result in an increase of metalloprotease production. When Vibrio was irradiated at 0.5 and 1 kGy, the protease activities peaked at 18 h after inoculation and the levels of activities were lower 1.2- and 1.4-fold, respectively, compared to the non-irradiated counterpart. Results from this study indicate that gamma radiation is not likely to activate the virulence ability of surviving Vibrio.

A Study on The Etiology of Wu You-ke(吳又可)'s Epidemic(溫疫) Theory (오우가(吳又可) 온역학설(溫疫學說)의 병인관(病因觀)에 대한 연구)

  • Eun, Seok-Min
    • Journal of Korean Medical classics
    • /
    • v.20 no.4
    • /
    • pp.251-265
    • /
    • 2007
  • This study is a research on the etiology in Wu Youke's wenyi theory. In regard to the etiology of epidemic disease that had been spread on a very large scale at that time, Wu Youke denied the traditional theory which urged the irregular change of climate as the cause of epidemic disease, and proposed the concept of 'zaqi' which was considered by him to be something that could be the real cause of epidemic disease. And He treated the wenyi disease as something that has the same meaning with wenbing, so his concept on wenbing was basically the thing that treats 'zaqi' as the fundamental cause of wenbing and treats the concept of 'wen(溫)' as an environmental cause that could help activate the virulence of 'zaqi'. Such concept like this was the thing somewhat different from the traditional etiological theory that considers the change of climate as the principal cause of waigan(外感)-disease, and it must for the most part have been originated from the experience of Wu Youke himself. But this study, in contrast, based on the thing he denied the traditional theory on the irregular change of climate, has been done in the point of view that fundamental concept of his wenyi theory such as 'zaqi' was not only originated from his clinical experience but also from the influence of paradigm shift in the natural philosophy of that time. There had been so much change in cosmology and natural philosophy from the fundamental basis at that time, and the the most principal concept of it was that there always exists irregular faces in the change of nature. Such concept like this got into its stride from about 17th century, and it was expressed in the form of the severe criticism against the traditional natural philosophy. In regard to this, this study has outlined the academic thought of the leading scholars who made a significant progress in such a paradigm shift, and it includes the scholars like Wang Tingxiang, Wang Fuzhi, Hu Wei, Huang Zongxi, who played their role in the time of the latter period of Ming dynasty and the former period of Qing dynasty.

  • PDF

A Pilot Study of the Difference between Gyejibongnyeong-hwan and Gyejibongnyeong-hwan combined Acupuncture Therapy on the Primary Dysmenorrhea (원발성 생리통에 대한 계지복령환(桂枝茯笭丸) 단독치료와 침(鍼) 치료 병행 차이 연구)

  • Cho, Jung-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.1
    • /
    • pp.161-168
    • /
    • 2007
  • Purpose : The purpose of this study is to identify the difference of clinical effects of gyejibongnyeong-hwan and acupuncture therapy on primary dysmenorrhea. Methods : We studied with ten patients recruited from April, 2003 to Feburary, 2004. Women with organic disease as uterine myoma, ovarian cysts and pelvic inflammatory disease were excluded from this study. We treated them with gyejibongnyeong-hwan or gyejibongnyeong-hwan combined acupuncture therapy for 8weeks. The severity of dysmenorrhea was measured by VAS(Visual Analog Scale). Results : gyejibongnyeong-hwan significantly decreased the severity of dysmenorrhea. And Gyejibongnyeong-hwan combined Acupuncture therapy significantly decreased the severity of dysmenorrhea. The change of VAS of gyejibongnyeong-hwan group is significantly higher than gyejibongnyeong-hwan combined acupuncture. Both of Gyejibongnyeong-hwan and acupuncture did not show hepatic and renal virulence. Conclusion : This study shows that gyejibongnyeong-hwan has remarkable effects on dysmenorrhea patients. Obviously further researches concerning all these area still necessary.

  • PDF

Gene Expression Profiles Following High-Dose Exposure to Gamma Radiation in Salmonella enterica serovar Typhimurium

  • Lim, Sangyong;Jung, Sunwook;Joe, Minho;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.111-119
    • /
    • 2008
  • Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

Should We Start Treating Chronic Low Back Pain with Antibiotics Rather than with Pain Medications?

  • Birkenmaier, Christof
    • The Korean Journal of Pain
    • /
    • v.26 no.4
    • /
    • pp.327-335
    • /
    • 2013
  • For those of us who have read the 2 recently published articles by a Danish - British research group, it might appear that we are observing an impending paradigm shift on the origins of chronic low back pain. The results of this research indicate, that chronic low back pain associated with bone marrow edema in vertebral endplates that are adjacent to herniated intervertebral discs may be caused by infections with anaerobic bacteria of low virulence. According to these articles, treatment with certain antibiotics is significantly more effective than placebo against this low back pain. If these findings are to hold true in repeat studies by other researchers, they stand to fundamentally change our concepts of low back pain, degenerative disc disease and in consequence the suitable therapies for these entities. It may in fact require pain specialists to become familiarized with the details of antibiotic treatments and their specific risks in order to be able to properly counsel their patients. While this seems hard to believe at first glance, bacteria have been implicated in the pathogenesis of other conditions that do not primarily impose as infectious diseases such as gastric ulcers. While the authors refer to a few previous studies pointing into the same direction, the relevant research is really only from one group of collaborating scientists. Therefore, before we start prescribing antibiotics for chronic low back pain, it is imperative that other researchers in different institutions confirm these results.

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

The Effects of Sodium Chloride on the Physiological Characteristics of Listeria monocytogenes

  • Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.395-402
    • /
    • 2013
  • Sodium chloride is used to improve various properties of processed meat products, e.g., taste, preservation, water binding capacity, texture, meat batter viscosity, safety, and flavor; however, many studies have shown that sodium chloride increases the resistance of many foodborne pathogens to heat and acid. Listeria monocytogenes has been isolated from various readyto- eat (RTE) meat and dairy products formulated with sodium chloride; therefore, the objective of this paper was to review the effects of sodium chloride on the physiological characteristics of L. monocytogenes. The exposure of L. monocytogenes to sodium chloride may increase biofilm formation on foods or food contact surfaces, virulence gene transcription, invasion of Caco-2 cells, and bacteriocin production, depending on L. monocytogenes strain and serotype as well as sodium chloride concentration. When L. monocytogenes cells were exposed to sodium chloride, their resistance to UV-C irradiation and freezing temperatures increased, but sodium chloride had no effect on their resistance to gamma irradiation. The morphological properties of L. monocytogenes, especially cell elongation and filament formation, also change in response to sodium chloride. These findings indicate that sodium chloride affects various physiological responses of L. monocytogenes and thus, the effect of sodium chloride on L. monocytogenes in RTE meat and dairy products needs to be considered with respect to food safety. Moreover, further studies of microbial risk assessment should be conducted to suggest an appropriate sodium chloride concentration in animal origin foods.

Population Structure and Race Variation of the Rice Blast Fungus

  • Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Worldwide, rice blast, caused by Magnaporthe grisea (Hebert) Barr. (anamorph, Pyricularia grisea Sacc.), is one of the most economically devastating crop diseases. Management of rice blast through the breeding of blast-resistant varieties has had only limited xuccess due to the frequent breakdown of resistance under field conditions (Bonman etal., 1992; Correa-Victoria and Zeigler, 1991; Kiyosawa, 1982). The frequent variation of race in pathogen populations has been proposed as the principal mechanism involved in the loss of resistance (Ou, 1980). Although it is generally accepted that race change in M. grisea occurs in nature, the degree of its variability has been a controversial subject. A number of studies have reported the appearance of new races at extremely high rates (Giatgong and Frederiksen, 1968; Ou and Ayad, 1968; Ou et al., 1970; Ou et al., 1971). Various potential mechanisms, including heterokaryosis (Suzuki, 1965), parasexual recombination (Genovesi and Magill, 1976), and aneuploidy (Kameswar Row et al., 1985; Ou, 1980), have been proposed to explain frequent race changes. In contrast, other studies have shown that although race change could occur, its frequency was much lower than that predicted by earlier studies (Bonman et al., 1987; Latterell and Rossi, 1986; Marchetti et al., 1976). Although questions about the frequency of race changes in M. grisea remain unanswered, the application of molecular genetic tools to study the fungus, ranging from its genes controlling host specificity to its population sturctures and dynamics, have begun to provide new insights into the potential mechanisms underlying race variation. In this review we aim to provide an overview on (a) the molecular basis of host specificity of M. grisea, (b) the population structure and dynamics of rice pathogens, and (c) the nature and mechanisms of genetic changes underpinning virulence variation in M. grisea.

  • PDF

Effect of irradiation on the Streptococcus mutans (방사선조사가 Streptococcus mutans에 미치는 영향)

  • Ahn, Ki-Dong;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Purpose : To observe direct effect of irradiation on cariogenic Streptooccus mutans. Materials and Methods : S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, transmission electron microscopy, RT-PCR, and SDS-PAGE, respectively. Results : After irradiation with 10 and 20Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated 5. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased, a higher number of cells showed thickened cell wall and cell membrane and Iysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spap between cells with and without irradiation of 40Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. Conclusion : These results suggest that irradiation affects the cell Integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  • PDF

A New Selection System for Pepper Regeneration by Mannose

  • Kim, Joo-Yean;Min Jung;Kim, Hyo-Soon;Lee, Yun-Hee;Park, Soon-Ho;Lim, Yong-Pyo;Min, Byung-Whan;Yang, Seung-Gyun;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2002
  • We report the development of a new selection system for the transformation of pepper plants by mannose. In order to achieve this, we first tested several factors related to regeneration conditions. Among the 30 inbred lines examined, line P9l5 was able to generate shoots at the highest rate from both cotyledons and hyporotyls in MS media. A dosage curve for optimizing the selection conditions was established by mixing mannose (range 0-50 g/L) and sucrose (range 0-30 g/L). The least selection pressure on shoot formation was created by a mixture of sucrose and mannose at 20 g/L and 15 g/L, respectively, and the threshold for ultimate tissue death was 50 g/L of mannose irrespective of the sucrose concentration. However, we found that mannose itself was not the sole inhibitor of pepper shoot development. High concentrations of sucrose (30 g/L) contributed additively to the inhibition of shoot formation at higher mannose concentrations. Genotype preference is a major factor that enhances regeneration ability in mannose media, as was observed in MS media. P9l5 and P410 line had high regeneration rates under mannose selection conditions in the presence of Agrobacterium infection. Different virulence levels of Agrobacterium strains did change the regeneration rates, probably due to interaction with the specificities of the inbred lines. Taken together, P9l5 offers the best pepper inbred line for transformation and we recommend a selection condition of 20 g/L of sucrose and 15 g/L or more of mannose up to 50 g/L in media.