• Title/Summary/Keyword: virtual states

Search Result 111, Processing Time 0.021 seconds

UFKLDA: An unsupervised feature extraction algorithm for anomaly detection under cloud environment

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.684-695
    • /
    • 2019
  • In a cloud environment, performance degradation, or even downtime, of virtual machines (VMs) usually appears gradually along with anomalous states of VMs. To better characterize the state of a VM, all possible performance metrics are collected. For such high-dimensional datasets, this article proposes a feature extraction algorithm based on unsupervised fuzzy linear discriminant analysis with kernel (UFKLDA). By introducing the kernel method, UFKLDA can not only effectively deal with non-Gaussian datasets but also implement nonlinear feature extraction. Two sets of experiments were undertaken. In discriminability experiments, this article introduces quantitative criteria to measure discriminability among all classes of samples. The results show that UFKLDA improves discriminability compared with other popular feature extraction algorithms. In detection accuracy experiments, this article computes accuracy measures of an anomaly detection algorithm (i.e., C-SVM) on the original performance metrics and extracted features. The results show that anomaly detection with features extracted by UFKLDA improves the accuracy of detection in terms of sensitivity and specificity.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Collaborative Visualization of Warfare Simulation using a Commercial Game Engine (상업용 게임 엔진을 활용한 전투 시뮬레이션 결과의 협업 가시화)

  • Kim, Hyungki;Kim, Junghoon;Kang, Yuna;Shin, Suchul;Kim, Imkyu;Han, Soonhung
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • The needs for reusable 3D visualization tool has been being raised in various industries. Especially in the defense modeling and simulation (M&S) domain, there are abundant researches about reusable and interoperable visualization system, since it has a critical role to the efficient decision making by offering diverse validation and analyzing processes. To facilitate the effectiveness, states-of-the-arts M&S systems are applying VR (Virtual Reality) or AR (Augmented Reality) technologies. To reduce the work burden authors design a collaborative visualization environment based on a commercial game engine Unity3D. We define the requirements of the warfare simulation by analyzing pros and cons of existing tools and engines such as SIMDIS or Vega, and apply functionalities of the commercial game engine to satisfy the requirements. A prototype has been implemented as the collaborative visualization environment of iCAVE at KAIST, which is a facility for immersive virtual environment. The facility is intraoperative with smart devices.

Virtual Environment Interfacing based on State Automata and Elementary Classifiers (상태 오토마타와 기본 요소분류기를 이용한 가상현실용 실시간 인터페이싱)

  • Kim, Jong-Sung;Lee, Chan-Su;Song, Kyung-Joon;Min, Byung-Eui;Park, Chee-Hang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3033-3044
    • /
    • 1997
  • This paper presents a system which recognizes dynamic hand gesture for virtual reality (VR). A dynamic hand gesture is a method of communication for human and computer who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the produced by two persons with their hands may not have the same numerical values where obtained through electronic sensors. To recognize meaningful gesture from continuous gestures which have no token of beginning and end, this system segments current motion states using the state automata. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line pattern recognition.

  • PDF

Kinematic and Structural Analysis of a 6-DOF Manipulator for Narrow-space Work (협소 공간 작업을 위한 6축 다관절 로봇의 기구학 및 구조해석)

  • Chung, Seong Youb;Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.666-672
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator for narrow workspaces in press forming processes, such as placing PEM nuts on the bottom of a chassis. In this paper, kinematic analysis was performed for the position control of the manipulator, along with structural analyses for position accuracy with different payloads. First, the Denavit-Hatenberg (DH) parameters are defined, and then the forward and backward kinematic equations are presented using the DH parameters. The kinematic model was verified by visual simulation using Coppelia Robotics' virtual robot experimentation platform (V-REP). Position accuracy analysis was performed through structural analyses of deflection due to self-weight and deflection under full payload (5 kgf) in fully opened and fully folded states. The maximum generated stress was 22.05 MPa in the link connecting axes 2 and 3, which was confirmed to be structurally safe when considering the materials of the parts.

SIA-LVC : Scalable Interworking Architecture for Military L-V-C Training Systems Based on Data Centric Middleware (SIA-LVC: 데이터 중심 미들웨어 기반 확장성 있는 국방 L-V-C 훈련체계 연동 아키텍쳐)

  • Kim, Won-Tae;Park, Seung-Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.393-402
    • /
    • 2016
  • A Military L-V-C system consists of distributed complex systems integrating Live systems working on physical wall-clock time, Virtual systems ruled by virtually pseudo realtime events on a computer, and Constructive systems only depending on the causal relationship between the continuous events. Recently many needs for L-V-C training systems are increasing in order to achieve the maximum training effects with low costs. While theoretical/logical researches or only partially interworking technologies have been proposed, there are few perfect interworking architectures for totally interoperating L-V-C systems in world-wide. In this paper, we design and develop a novel interworking architecture based on data centric middleware for the consistent global time with the same states on the entire L-V-C data and events by means of integrating the heterogeneous distributed middleware standards of each L-V-C system. In addition, simulated L-V-C systems based on real systems will be used for the efficiency and performance of the developed interworking architecture.

Identification and Pharmacological Analysis of High Efficacy Small Molecule Inhibitors of EGF-EGFR Interactions in Clinical Treatment of Non-Small Cell Lung Carcinoma: a Computational Approach

  • Gudala, Suresh;Khan, Uzma;Kanungo, Niteesh;Bandaru, Srinivas;Hussain, Tajamul;Parihar, MS;Nayarisseri, Anuraj;Mundluru, Hema Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8191-8196
    • /
    • 2016
  • Inhibition of EGFR-EGF interactions forms an important therapeutic rationale in treatment of non-small cell lung carcinoma. Established inhibitors have been successful in reducing proliferative processes observed in NSCLC, however patients suffer serious side effects. Considering the narrow therapeutic window of present EGFR inhibitors, the present study centred on identifying high efficacy EGFR inhibitors through structure based virtual screening strategies. Established inhibitors - Afatinib, Dacomitinib, Erlotinib, Lapatinib, Rociletinib formed parent compounds to retrieve similar compounds by linear fingerprint based tanimoto search with a threshold of 90%. The compounds (parents and respective similars) were docked at the EGF binding cleft of EGFR. Patch dock supervised protein-protein interactions were established between EGF and ligand (query and similar) bound and free states of EGFR. Compounds ADS103317, AKOS024836912, AGN-PC-0MXVWT, GNF-Pf-3539, SCHEMBL15205939 were retrieved respectively similar to Afatinib, Dacomitinib, Erlotinib, Lapatinib, Rociletinib. Compound-AGN-PC-0MXVWT akin to Erlotinib showed highest affinity against EGFR amongst all the compounds (parent and similar) assessed in the study. Further, AGN-PC-0MXVWT brought about significant blocking of EGFR-EGF interactions in addition showed appreciable ADMET properties and pharmacophoric features. In the study, we report AGN-PC-0MXVWT to be an efficient and high efficacy inhibitor of EGFR-EGF interactions identified through computational approaches.

Sliding Mode Controller Design Using Virtual State and State Decoupling for IPM Motor (가상 상태와 상태 디커플링을 이용한 IPM전동기용 슬라이딩 모드 제어기의 설계)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Seong-Sik;Kwak, Gun-Pyong;Park, Young-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.514-521
    • /
    • 2009
  • The current control for Interior-mounted Permanent Magnet Motor(IPM Motor) is more complicate than Surface-mounted Permanent magnet Motor(SPM Motor) because of its torque characteristic depending on the reluctance. For high performance torque control, it requirs state decoupling between d-axis current and q-axis current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variation and each current can be regulated independently. This paper proposes a novel approach for fully decoupling the states cross-coupling using sliding mode control with virtual state for IPM Motor. As a result, in spite of the parameter uncertainty and disturbance, the proposed sliding surface can have the dynamics of nominal system controlled by PI controller.

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

A Computationally-Efficient of Fair Queueing without Maintaining the System Virtual Time (시스템 가상시간을 사용하지 않는 효율적인 Fair Queueing)

  • 이준엽;이승형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.9C
    • /
    • pp.836-841
    • /
    • 2002
  • Packet scheduling is an essential function to guarantee a quality of service by differentiating services in the Internet. Scheduling algorithms that have been suggested so far can be devided into Round-Robin methods and Fair Queueing methods Round-Robin methods have the advantage of high-speed processing through simple implementations, while Fair Queueing methods offer accurate services. Fair queueing algorithms, however, have problems of computational overheads and implementation complexity as their schedulers manage the states of every flow. This paper suggests a new method in which each flow performs the calculation in a distributed way to decide the service order. Our algorithm significantly reduces the scheduler's computational overheads while providing the same level of accuracy with the previous Fair Queueing algorithms.