• Title/Summary/Keyword: virtual sensors

Search Result 258, Processing Time 0.029 seconds

An Efficient Location Based Service based on Mobile Augmented Reality applying Street Data extracted from Digital Map (도로 데이터를 활용한 모바일 증강현실 기반의 효율적인 위치기반 서비스)

  • Lee, Jeong Hwan;Jang, Yong Hee;Kwon, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.63-70
    • /
    • 2013
  • With the increasing use of high-performance mobile devices such as smartphones, users have been able to connect to the Internet anywhere, anytime, so that Location Based Services(LBSes) have been popular among the users in order to obtain personalized information associated with their locations. The services have advanced to provide the information realistically and intuitively by adopting Augmented Reality(AR) technology, where the technology utilizes various sensors embedded in the mobile devices. However, the services have inherent problems due to the small screen size of the mobile devices and the complexity of the real world environment. Overlapping contents on a small screen and user's possible movement should be taken into consideration in displaying the icons on objects that block user's environment such as trees and buildings. The problems mainly happen when the services use only user's location and sensor data to calculate the position of the displayed information. In order to solve the problems, this paper proposes a method that applies street data extracted from a digital map. The method uses the street data as well as the location and direction data to determine contents that are placed on both sides of a virtual street which augments the real street. With scrolling the virtual street, which means a virtual movement, some information far away from the location of the user can be identified without user's actual movement. Also the proposed method is implemented for region "Aenigol", and the efficiency and usefulness of the method is verified.

Vergence Control of the Parallel-axis Stereo Camera using Signal Processing (신호처리를 이용한 평행축 입체 카메라의 주시각 제어)

  • Lee, Gwang-Soon;Kim, Hyoung-Nam;Hur, Nam-Ho;Um, Gi-Mun;Ahn, Chung-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.151-156
    • /
    • 2003
  • The vergence control method is presented for a parallel-axls stereo camera (PASC) using a signal processing technique such as shift, (rotation), and scaling. The PASC is considered as the simplest one of binocular stereo cameras. However, its major limitation lies in the controllability of vergence since its left and right imaging sensors of CCDs are fixed. On the other hand, a horizontal-moving-axis stereo camera (HMASC) with movable imaging sensors is able to control the vergence by moving its CCDs horizontally. In spite of its vergence controllability, there is a major drawback in the implementation because of complicated mechanical structure and the additional cost. To overcome the vergence control problem of the PASC, an operational principle of the HMASC is applied to the PASC. To be specific, without any additional hardware the vergence control problem of the PASC is solved with the signal processing technique. Assuming the virtual displacement between CCD's, a disappearing part of acquired images is removed and the original image site is recovered via interpolation. Experimental results show that the vergence control between stereo images captured by the PASC it possible with an acceptable degradation of the image quality defending on the virtual displacement of CCDs.

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

Implementation of Hand-Gesture-Based Augmented Reality Interface on Mobile Phone (휴대폰 상에서의 손동작 기반 증강현실 인터페이스 구현)

  • Choi, Jun-Yeong;Park, Han-Hoon;Park, Jung-Sik;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.941-950
    • /
    • 2011
  • With the recent advance in the performance of mobile phones, many effective interfaces for them have been proposed. This paper implements a hand-gesture-and-vision-based interface on a mobile phone. This paper assumes natural interaction scenario when user holds a mobile phone in a hand and sees the other hand's palm through mobile phone's camera. Then, a virtual object is rendered on his/her palm and reacts to hand and finger movements. Since the implemented interface is based on hand familiar to humans and does not require any additional sensors or markers, user freely interacts with the virtual object anytime and anywhere without any training. The implemented interface worked at 5 fps on mobile phone (Galaxy S2 having a dual-core processor).

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

Virtual Environment Interfacing based on State Automata and Elementary Classifiers (상태 오토마타와 기본 요소분류기를 이용한 가상현실용 실시간 인터페이싱)

  • Kim, Jong-Sung;Lee, Chan-Su;Song, Kyung-Joon;Min, Byung-Eui;Park, Chee-Hang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3033-3044
    • /
    • 1997
  • This paper presents a system which recognizes dynamic hand gesture for virtual reality (VR). A dynamic hand gesture is a method of communication for human and computer who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the produced by two persons with their hands may not have the same numerical values where obtained through electronic sensors. To recognize meaningful gesture from continuous gestures which have no token of beginning and end, this system segments current motion states using the state automata. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line pattern recognition.

  • PDF

A Development of Effective Educational Simulator for Electronic Control System of Automobile Chassis (섀시 전자제어 시스템의 효과적인 교육을 위한 능동형 시뮬레이터의 개발)

  • Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3326-3333
    • /
    • 2012
  • In this paper, an educational simulator of automobile chassis electronic control system was developed. The developed system is composed of three parts, a driving condition control & monitoring system, a chassis electronic system monitoring & analysis system, and a virtual simulator & educational multimedia contents. The driving condition control & monitoring system has a commercial real car simulator, hydraulic equipments for representing driving conditions, and a remote control and monitoring system. In the chassis electronic system monitoring & analysis system, information of various sensors and actuators applied to the system can be monitored by Labview programs. Finally, the suggested virtual simulator and the multimedia with 2D Flash and 3D animations can be used effectively by means of teaching materials.

Performance Factor Analysis of Sensing-Data Estimation Algorithm for Walking Robots (보행 로봇을 위한 센서 추정 알고리즘의 성능인자 분석)

  • Shon, Woong-Hee;Yu, Seung-Nam;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4087-4094
    • /
    • 2010
  • The sensor data which is measured by Quadruped robot is utilized to recognize the physical environment or other information and to control the posture and walking of robot system. In order to control the robot precisely, high accuracy of sensor data is required, most of these sensors however, belongs to expensive and low-durable products. Moreover, these are exposed excessive load operation in a field condition if it is applied to field robot system. This issue becomes more serious one when the robot system is manufactured as a mass product. As in this context, this study suggests a virtual sensor technology to alternate or assist the main sensor system. This scheme is realized by using back-propagation algorithm of neural network theory, and the quality of estimated sensor data could be improved through the algorithmic and hardware based treatments. This study performs the various trial to identify the effective parameters which effect to the quality and reliability of estimated sensor data and tries to show the possibility of proposed methodology.

Direction of arrival estimation of non-Gaussian signals for nested arrays: Applying fourth-order difference co-array and the successive method

  • Ye, Changbo;Chen, Weiyang;Zhu, Beizuo;Tang, Leiming
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.869-880
    • /
    • 2021
  • Herein, we estimate the direction of arrival (DOA) of non-Gaussian signals for nested arrays (NAs) by implementing the fourth-order difference co-array (FODC) and successive methods. In particular, considering the property of the fourth-order cumulant (FOC), we first construct the FODC of the NA, which can obtain O(N4) virtual elements using N physical sensors, whereas conventional FOC methods can only obtain O(N2) virtual elements. In addition, the closed-form expression of FODC is presented to verify the enhanced degrees of freedom (DOFs). Subsequently, we exploit the vectorized FOC (VFOC) matrix to match the FODC of the NA. Notably, the VFOC matrix is a single snapshot vector, and the initial DOA estimates can be obtained via the discrete Fourier transform method under the underdetermined correlation matrix condition, which utilizes the complete DOFs of the FODC. Finally, fine estimates are obtained through the spatial smoothing-Capon method with partial spectrum searching. Numerical simulation verifies the effectiveness and superiority of the proposed method.

Real-time simulation and control of indoor air exchange volume based on Digital Twin Platform

  • Chia-Ying Lin;I-Chen Wu
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.637-644
    • /
    • 2024
  • Building Information Modeling (BIM) technology has been widely adopted in the construction industry. However, a challenge encountered in the operational phase is that building object data cannot be updated in real time. The concept of Digital Twin is to digitally simulate objects, environments, and processes in the real world, employing real-time monitoring, simulation, and prediction to achieve dynamic integration between the virtual and the real. This research considers an example related to indoor air quality for realizing the concept of Digital Twin and solving the problem that the digital twin platform cannot be updated in real time. In indoor air quality monitoring, the ventilation rate and the presence of occupants significantly affects carbon dioxide concentration. This study uses the indoor carbon dioxide concentration recommended by the Taiwan Environmental Protection Agency as a reference standard for air quality measurement, providing a solution to the aforementioned challenges. The research develops a digital twin platform using Unity, which seamlessly integrates BIM and IoT technology to realize and synchronize virtual and real environments. Deep learning techniques are applied to process camera images and real-time monitoring data from IoT sensors. The camera images are utilized to detect the entry and exit of individuals indoors, while monitoring data to understand environmental conditions. These data serve as a basis for calculating carbon dioxide concentration and determining the optimal indoor air exchange volume. This platform not only simulates the air quality of the environment but also aids space managers in decision-making to optimize indoor environments. It enables real-time monitoring and contributes to energy conservation.