• Title/Summary/Keyword: virtual sensors

Search Result 258, Processing Time 0.028 seconds

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.

A Calibration of Kinematic Differences between the Robot Model in OLP and Actual SCARA Robot

  • Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.111-116
    • /
    • 1998
  • In this study, we try to coincide virtual robot system in an OLP(off-line programming) with actual robot system even though kinematic differences between them are made. The virtual robot in the OLP may be modeled according to kinematics of the actual robot system. However, it is a complicated problem to find exactly all kinematic parameters of actual robot and environment. In this paper, an automated calibration method is proposed In order to find some kinematical parameters which are necessary for the modeling of a robot and environment in the OLP. It is applicable to SCARA robot for assembly task. In this method, a well-marked worktable of environment Is regarded as reference coordinate frame. The robot detects some marks on the worktable through sensors attached to the end-effector. The necessary parameters are calculated from the data of the robot joint variables when the robot detects the mark. The model in the OLP is modified by the parameters.

  • PDF

Sensors-type healthcare content system with virtual trainers (가상트레이너와 함께하는 센서형 헬스케어 콘텐츠 시스템)

  • Hyeon, Uijoo;Kim, Dongyoung;Yoon, Seonjeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.151-152
    • /
    • 2019
  • 운동 기구를 이용한 운동의 경우 바른 자세와 균형을 유지하는 것이 중요하다. 이에 본 논문에서는 적외선 감지센서가 부착된 디스플레이형 전신거울과 프리웨이트 운동기구에 부착된 센서를 이용하여 이용자의 정보를 인지하고 디스플레이 장치에 출력되는 가상 트레이너를 통해 균형 운동에 대한 가이드를 제공하는 게임형 콘텐츠를 설계하였다. 본 콘텐츠의 목표는 운동 시에 중요한 바른 자세를 잡기 위하여 균형 상태를 알 수 있게 하며, 가상트레이너에 의해 보다 효과적이고 흥미로우며 지속적인 운동을 가능하게 하는 방법을 제공하는 것에 있다.

  • PDF

A Smartphone-based Virtual Reality Visualization System for Human Activities Classification

  • Lomaliza, Jean-Pierre;Moon, Kwang-Seok;Park, Hanhoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.45-46
    • /
    • 2018
  • This paper focuses on human activities monitoring problem using onboard smartphone sensors as data generator. Monitoring such activities can be very important to detect anomalies and prevent disease from patients. Machine learning (ML) algorithms appear to be ideal approaches to use for processing data from smartphone to get sense of how to classify human activities. ML algorithms depend on quality, the quantity and even more important, the properties or features, that can be learnt from data. This paper proposes a mobile virtual reality visualization system that helps to view data representation in a very immersive way so that its quality and discriminative characteristics may be evaluated and improved. The proposed system comes as well with a handy data collecting application that can be accessed directly by the VR visualization part.

  • PDF

Character Motion Control by Using Limited Sensors and Animation Data (제한된 모션 센서와 애니메이션 데이터를 이용한 캐릭터 동작 제어)

  • Bae, Tae Sung;Lee, Eun Ji;Kim, Ha Eun;Park, Minji;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • A 3D virtual character playing a role in a digital story-telling has a unique style in its appearance and motion. Because the style reflects the unique personality of the character, it is very important to preserve the style and keep its consistency. However, when the character's motion is directly controlled by a user's motion who is wearing motion sensors, the unique style can be discarded. We present a novel character motion control method that uses only a small amount of animation data created only for the character to preserve the style of the character motion. Instead of machine learning approaches requiring a large amount of training data, we suggest a search-based method, which directly searches the most similar character pose from the animation data to the current user's pose. To show the usability of our method, we conducted our experiments with a character model and its animation data created by an expert designer for a virtual reality game. To prove that our method preserves well the original motion style of the character, we compared our result with the result obtained by using general human motion capture data. In addition, to show the scalability of our method, we presented experimental results with different numbers of motion sensors.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Direct Power Sensorless Control of Three-Phase AC/DC PFC PWM Converter using Virtual Flux Observer (가상 자속관측기를 이용한 3상 AC/DC PFC PWM 컨버터의 직접 전력 센서리스 제어)

  • Kim, Young-Sam;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1442-1447
    • /
    • 2012
  • In this paper, direct power control system for three-phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the Reduced-order flux observer using the actual currents and the command control voltage. The source voltage sensors are replaced by a flux estimator. The active and reactive powers estimation are performed based on the estimated flux and Phase anble. The proposed algorithm is verified through simulation and experiment.

Logical Activity Recognition Model for Smart Home Environment

  • Choi, Jung-In;Lim, Sung-Ju;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.67-72
    • /
    • 2015
  • Recently, studies that interact with human and things through motion recognition are increasing due to the expansion of IoT(Internet of Things). This paper proposed the system that recognizes the user's logical activity in home environment by attaching some sensors to various objects. We employ Arduino sensors and appreciate the logical activity by using the physical activitymodel that we processed in the previous researches. In this System, we can cognize the activities such as watching TV, listening music, talking, eating, cooking, sleeping and using computer. After we produce experimental data through setting virtual scenario, then the average result of recognition rate was 95% but depending on experiment sensor situation and physical activity errors the consequence could be changed. To provide the recognized results to user, we visualized diverse graphs.

Clustering and Communications Scheduling in WSNs using Mixed Integer Linear Programming

  • Avril, Francois;Bernard, Thibault;Bui, Alain;Sohier, Devan
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2014
  • We consider the problem of scheduling communications in wireless sensor networks (WSNs) to ensure battery preservation through the use of the sleeping mode of sensors.We propose a communication protocol for 1-hop WSNs and extend it to multi-hop WSNs through the use of a 1-hop clustering algorithm.We propose to schedule communications in each cluster in a virtual communication ring so as to avoid collisions. Since clusters are cliques, only one sensor can speak or listen in a cluster at a time, and all sensors need to speak in each of their clusters at least once to realize the communication protocol. We model this situation as a mathematical program.

Virtual Brake Pressure Sensor Using Vehicle Yaw Rate Feedback (차량 요레이트 피드백을 통한 가상 제동 압력 센서 개발)

  • You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents observer-based virtual sensors for YMC(Yaw Moment Control) systems by differential braking. A high-fidelity empirical model of the hydraulic unit in YMC system was developed for a model-based observer design. Optimal, adaptive, and robust observers were then developed and their estimation accuracy and robustness against model uncertainty were investigated via HILS tests. The HILS results indicate that the proposed disturbance attenuation approach indeed exhibits more satisfactory pressure estimation performance than the other approach with admissible degradation against the predefined model disturbance.