• Title/Summary/Keyword: virtual patient dataset

Search Result 3, Processing Time 0.019 seconds

From TMJ to 3D Digital Smile Design with Virtual Patient Dataset for diagnosis and treatment planning (가상환자 데이터세트를 기반으로 악관절과 심미를 고려한 진단 및 치료계획 수립)

  • Lee, Soo Young;Kang, Dong Huy;Lee, Doyun;Kim, Heechul
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.71-90
    • /
    • 2021
  • The virtual patient dataset is a collection of diagnostic data from various sources acquired from a single patient into a coordinate system of three-dimensional visualization. Virtual patient dataset makes it possible to establish a treatment plan, simulate various treatment procedures, and create a treatment planning delivery device. Clinicians can design and simulate a patient's smile on the virtual patient dataset and select the optimal result from the diagnostic process. The selected treatment plan can be delivered identically to the patient using manufacturing techniques such as 3D printing, milling, and injection molding. The delivery of this treatment plan can be linked to the final prosthesis through mockup confirmation through provisional restoration fabrication and delivery in the patient's mouth. In this way, if the diagnostic data superimposition and processing accuracy during the manufacturing process are guaranteed, 3D digital smile design simulated in 3D visualization can be accurately delivered to the real patient. As a clinical application method of the virtual patient dataset, we suggest a decision-making method that can exclude occlusal adjustment treatment from the treatment plan through the digital occlusal pressure analysis. A comparative analysis of whole-body scans before and after temporomandibular joint treatment was suggested for adolescent idiopathic scoliosis patients with temporomandibular joint disease. Occlusal plane and smile aesthetic analysis based on the virtual patient dataset was presented when treating patients with complete dentures.

Virtual Environments for Medical Training: Soft tissue modeling (의료용 훈련을 위한 가상현실에 대한 연구)

  • Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.372-377
    • /
    • 2007
  • For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in particular, has made it more difficult for an instructor to demonstrate the required manual skills. It has been recognized that, similar to flight simulators for pilots, virtual reality (VR) based surgical simulators promise a safer and more comprehensive way to train manual skills of medical personnel in general and surgeons in particular. One of the major challenges in the development of VR-based surgical trainers is the real-time and realistic simulation of interactions between surgical instruments and biological tissues. It involves multi-disciplinary research areas including soft tissue mechanical behavior, tool-tissue contact mechanics, computer haptics, computer graphics and robotics integrated into VR-based training systems. The research described in this paper addresses the problem of characterizing soft tissue properties for medical virtual environments. A system to measure in vivo mechanical properties of soft tissues was designed, and eleven sets of animal experiments were performed to measure in vivo and in vitro biomechanical properties of porcine intra-abdominal organs. Viscoelastic tissue parameters were then extracted by matching finite element model predictions with the empirical data. Finally, the tissue parameters were combined with geometric organ models segmented from the Visible Human Dataset and integrated into a minimally invasive surgical simulation system consisting of haptic interface devices and a graphic display.

  • PDF

Effect of the Number of Projected Images on the Noise Characteristics in Tomosynthesis Imaging

  • Fukui, Ryohei;Matsuura, Ryutaro;Kida, Katsuhiro;Goto, Sachiko
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.50-58
    • /
    • 2021
  • Purpose: In this study, we investigated the relationship between the noise characteristics and the number of projected images in tomosynthesis using a digital phantom. Methods: The digital phantom consisted of a columnar phantom in the center of the image and a spherical phantom with a diameter of 80 pixels. A virtual scan was performed, and 128 projected images (Tomo_w/o) of the phantoms were obtained. The image noise according to the Poisson distribution was added to the projected images (Tomo_×1). Furthermore, another projected image with additional noise was prepared (Tomo_×1/2). For each dataset, we created datasets with 64 (half) and 32 (quarter) projections by removing the even-numbered images twice from the 128 (fully) projected images. Tomosynthesis images were reconstructed by filtered back projection (FBP). The modulation transfer function (MTF) was estimated using the sphere method, and the noise power spectrum (NPS) was estimated using the two-dimensional Fourier transform method. Results: The MTFs did not change between datasets, and the NPSs improved as the number of projected images increased. The noise characteristics of the Tomo_×1_half images were the same as those of the Tomo_×1/2_full. Conclusions: To achieve a reduction in the patient dose in tomosynthesis acquisition, we recommend reducing the number of projected images rather than reducing the dose per projection.