• 제목/요약/키워드: virtual nodes

Search Result 221, Processing Time 0.025 seconds

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

An Attribute-Based Naming Architecture for Wireless Sensor Networks (무선 센서 네트워크를 위한 속성 기반 네이밍 구조)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.95-102
    • /
    • 2007
  • Recently, a lot of researchers focus on the sensor middleware that hide the complexity of application developments and provide the abstraction of functions to upper application layer. Although there we several factors to design sensor middleware, the attribute-based naming is considered to be an essential factor among them. However, most existing researches were not designed to reflect the characteristics of sensor networks and have the limitation of attribute-based query extension. This study adopts the concept of Virtual Counterpart to suggest the structure there attribute-based naming is supported by virtual sensor nodes of the middleware on the sink node. Unlike traditional data-centric middleware in which individual sensor nodes process attribute-based query, virtual sensor nodes mapped to physical sensor nodes are running on the middleware of the sink node and process attribute-based query as a proxy of the physical sensor. This approach enables attribute-based naming independent of physical infrastructure and easy extensibility.

  • PDF

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

DSLA: Dynamic Sampling Localization Algorithm Based on Virtual Anchor Node

  • Chen, Yanru;Yan, Bingshu;Wei, Liangxiong;Guo, Min;Yin, Feng;Luo, Qian;Wang, Wei;Chen, Liangyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4940-4957
    • /
    • 2019
  • Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.

A Virtual Grid-Based Routing Algorithm in Ad Hoc Networks (애드혹 네트워크에서의 가상 그리드 기반 라우팅 알고리즘)

  • Lee, Jong-Min;Kim, Seong-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.17-26
    • /
    • 2007
  • In this paper, we propose a basic virtual grid-based routing algorithm in order to devise an efficient routing method in ad hoc networks using the location information of nodes, energy level, etc. A packet is forwarded to the X-axis direction at first based on the location information of a destination node, and then it is forwarded to the Y-axis direction as its location becomes close to the destination from the viewpoint of the X-axis. Due to the selection of next hop nodes to deliver a packet from a certain node to a destination node, we can regard the whole network as a virtual grid network. The proposed routing algorithm determines routing paths using the local information such as the location information of a destination and its neighbor nodes. Thus, the routing path setup is achieved locally, by which we can expect reduction in network traffics and routing delays to a destination. To evaluate the performance of the proposed routing algorithm, we used the network simulator ns2 and compared its network throughput with that of an existing routing algorithm.

  • PDF

Virtual Reality Using X3DOM (X3DOM을 이용한 가상현실)

  • Chheang, Vuthea;Ryu, Ga-Ae;Jeong, Sangkwon;Lee, Gookhwan;Yoo, Kwan-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • Web 3D technology can be used to simulate the experiments of scientific, medical, engineering and multimedia visualization. On the web environment, 3D virtual reality can be accessed well without strictly on operating system, location and time. Virtual Reality (VR) is used to depict a three-dimensional, computer generated realistic images, sound and other sensations to replicated a real environment or an imaginary setting which can be explored and interacted with by a person. That person is immersed within virtual environment and is able to manipulate objects or perform a series of action. Virtual environment can be created with X3D which is the ISO standard for defining 3D interactive, web-based 3D content and integrating with multimedia. In this paper, we discuss about X3D VR stereo rendering scene and propose new X3D nodes for the HMD VR (head mounted display virtual reality). The proposed nodes are visualized by the web browser X3DOM of X3D.

A Study on Representation of 3D Virtual Fabric Simulation with Drape Image Analysis II - Focus on the Comparison between Real Clothing and 3D Virtual Clothing -

  • Lee, Min-Jeong;Sohn, Hee-Soon;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.3
    • /
    • pp.97-111
    • /
    • 2011
  • This study aims to apply 3D virtual fabric parameters - as obtained from previous research experiments - to 3D virtual clothing simulation in comparing its similarity with actual clothing as worn, with a view to verifying the objectivity and validity of the 3D virtual fabric simulation method devised by the drape image analysis method. In addition, the result is intended to be used as the basic data for new 3D virtual clothing simulation methods. As the results, 3D virtual fabric parameters designed to simulate 3D drape to be similar to actual fabrics were found to be Bending Strength, Buckling Point, Density, Particle Distance, and Shear. They were also found to be important measurements when evaluating visual similarity between drape shadow images and number of nodes. 3D virtual fabric simulation method devised by the drape image analysis method was appropriate in extracting 3D fabric parameters with the reflection of actual fabrics' physical and dynamic characteristics, in connection with 3D virtual fabric simulation. 3D virtual fabric parameters with the reflection of actual fabrics' physical and dynamic characteristics using the proposed 3D virtual fabric simulation method are accumulated and provided as a standard, this will facilitate the introduction 3D virtual fabric simulation technology.

Synchronization of a Complex Dynamical Network with Free Coupling Matrix (자유로운 연결 구조를 갖는 복잡 동적망의 동기화)

  • Lee, Tae-Hee;Park, Ju-H.;Kwon, Oh-Min;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1586-1591
    • /
    • 2011
  • This paper considers synchronization problem of a complex dynamical network. For the problem, the virtual target node is chosen as one of nodes in the complex network and only one connection is needed between an isolate target node and virtual target node not any more connections. Moreover, our synchronization scheme does not need additional conditions and information of coupling matrix comparing with existing works. Based on Lyapunov stability theory, a design criterion for a novel adaptive feedback controller for the synchronization between the isolate target node and another nodes of the complex network is proposed. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Novel techniques for improving the interpolation functions of Euler-Bernoulli beam

  • Chekab, Alireza A.;Sani, Ahmad A.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • In this paper, the efficiency and the accuracy of classical (CE) and high order (HE) beam element are improved by introducing two novel techniques. The first proposed element (FPE) provides an alternative for (HE) by taking the mode shapes of the clamped-clamped (C-C) beam into account. The second proposed element (SPE) which could be utilized instead of (CE) and (HE) considers not only the mode shapes of the (C-C) beam but also some virtual nodes. It is numerically proven that the eigenvalue problem and the frequency response function for Euler-Bernoulli beam are obtained more accurate and efficient in contrast to the traditional ones.