• 제목/요약/키워드: virtual navigation

검색결과 381건 처리시간 0.028초

제한적 인지 기반의 맵핑을 이용한 가상인간의 항해 특성 (Navigation Characteristics of a Virtual Human using a Limited Perception-based Mapping)

  • 한창희;김래현;김태우
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.93-103
    • /
    • 2005
  • This paper presents characteristics of a virtual human's navigation using a limited perception-based mapping. Previous approaches to virtual human navigation have used an omniscient perception requiring full layout of a virtual environment in advance. However, these approaches have a limitation on being a fundamental solution for a human-likeness of a virtual human, because behaviors of humans are basically based on their limited perception instead of omniscient perception. In this paper, we integrated Hill's mapping algorithm with a virtual human to experiment virtual human's navigation with the limited perception. This approach does not require full layout of the virtual environment, 360-degree's field of view, and vision through walls. In addition to static objects such as buildings, we consider enemy emergence that can affect an virtual human's navigation. The enemy emergence is used as the variable on the experiment of this present research. As the number of enemies varies, the changes in arrival rate and time taken to reach the goal position were observed. The virtual human navigates by two conditions. One is to take the shortest path to the goal position, and the other is to avoid enemies when the virtual human encounters them. The acquired result indicates that the virtual human's navigation corresponds to a human cognitive process, and thus this research can be a framework for human-likeness of virtual humans.

  • PDF

A New Mavigation Method in Virtual Environment

  • Koo, Eun-Young;Kon, Tae-Wook;Choy, Yoon-Chul
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.643-645
    • /
    • 2000
  • This paper puts emphasis on navigation in virtual environment, which is one of the major interfaces for the interactivity between human and virtual environment in virtual reality circumstances and worlds. It proposes a new navigation method: 2d Map-Based navigation, which prevents user's spatial lost in 3D Virtual Environment. The 2D Map-Based Navigation is composed of three major processes, Constant Velocity Navigation, Collision Detection and Avoidance, and Path Adjustment. The 2D Map-Based Navigation can reduce user's difficulties and improve user's sense of presence and reality in the virtual environments. The experiment study proved that the 2D Map-Based Navigation is a very natural, straightforward and useful navigation interface in the virtual environment.

  • PDF

가상공간에서 새로운 이동기법에 관한 연구 (A New Navigation/Traveling Method in Virtual Environment)

  • 권태욱;최윤철
    • 한국멀티미디어학회논문지
    • /
    • 제3권3호
    • /
    • pp.224-233
    • /
    • 2000
  • 본 논문은 인간과 VR환경과의 상호작용을 지원하는 중요한 요소 중 하나인 이동의 문제점 및 해 결 방법에 대하여 연구하였다. 이 논문에서 제시된 Intelligent Cruise-Control Navigation (ICCN)은 다중 사용자 환경의 가상공간을 이동할 때, 실세계와 유사한 이동방법을 제공하여 사용자로 하여금 가상공간에 대한 현장감 및 현실감의 제고에 초점을 두었다. ICCN은 사용자들이 가상공간에서 이동시 부가적인 입력이 없이도 일정한 속도로 이동을 지원하는 Constant Velocity Navigation, 이동 중 장애물 및 다른 사용자(아바타)와의 충돌현상을 감지 및 회피하는 Collision Detection and Avoidance, 그리고 충돌회피후 기존 방향으로의 계속된 이동을 지원하는 Path Adjustment등의 기능을 제공한다. ICCN은 사용자의 부가적인 노력의 감소 및 병행작업을 보장, 현실과 유사한 사용자 중심의 navigation 기 법 을 제공, 가상공간과 현실과의 괴리를 줄임으로써 가상현실이 추구하는 현실감 및 현장감을 높일 수 있도록 하였다. 실험을 통하여 본 연구에서 제안한 ICCN이 사용자중심의 매우 자연스럽고, 쉽고 편리한 가상공간 navigation 인터페이스라는 평가를 얻었다.

  • PDF

The Effects of Joystick-controlling and Walking-around on Navigating a Virtual Space

  • RYU, Jeeheon;PARK, Sanghoon;YANG, Eunbyul;JEONG, Museok
    • Educational Technology International
    • /
    • 제21권2호
    • /
    • pp.125-153
    • /
    • 2020
  • The advancement of virtual reality technology offers various locomotion options that support users' navigation behaviors in a virtual reality environment. This study was aimed at examining the effects of two navigation methods-joystick-controlling and walking-around-on users' perceived usability, behavioral engagement, and virtual presence. Fifty South Korean college students were recruited in the study, and they were assigned randomly to one of the two navigation conditions. Participants from each group were asked to observe a 3D object and complete the surveys. They were then asked to repeat the procedure with a 2D image. Using repeated-measures ANOVAs and MANOVA, we found that users using joystick-controlling reported higher usability and showed superior performance to the walking-around group on two tasks. Participants reported a higher behavioral engagement when observing the 2D image. Besides, they perceived a significantly higher virtual presence when observing the 2D image. Finally, we discussed the implications of the findings for the navigation method design.

척추 융합술에서 수술 계획을 재현하기 위한 가상현실 기반 수술 내비게이션 방법 (The Method of Virtual Reality-based Surgical Navigation to Reproduce the Surgical Plan in Spinal Fusion Surgery)

  • 송찬호;손재범;정의성;이호열;박영상;정유수
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2022
  • In this paper, we proposed the method of virtual reality-based surgical navigation to reproduce the pre-planned position and angle of the pedicle screw in spinal fusion surgery. The goal of the proposed method is to quantitatively save the surgical plan by applying a virtual guide coordinate system and reproduce it in the surgical process through virtual reality. In the surgical planning step, the insertion position and angle of the pedicle screw are planned and stored based on the virtual guide coordinate system. To implement the virtual reality-based surgical navigation, a vision tracking system is applied to set the patient coordinate system and paired point-based patient-to-image registration is performed. In the surgical navigation step, the surgical plan is reproduced by quantitatively visualizing the pre-planned insertion position and angle of the pedicle screw using a virtual guide coordinate system. We conducted phantom experiment to verify the error between the surgical plan and the surgical navigation, the experimental result showed that target registration error was average 1.47 ± 0.64 mm when using the proposed method. We believe that our method can be used to accurately reproduce a pre-established surgical plan in spinal fusion surgery.

힘 반향을 이용한 속도타원 가상환경 네비게이션 알고리즘 개발 (Development of a Velocity Ellipse Navigation Algorithm in Virtual Environments Using Force Feedback)

  • 윤인복;채영호
    • 한국CDE학회논문집
    • /
    • 제9권4호
    • /
    • pp.277-285
    • /
    • 2004
  • In this paper, a 2 DOF haptic yawing joystick for use as the navigation input device in virtual environments is introduced. The haptic yawing joystick has 360° range for yawing motion and ±100° for pitching motion. The device can support weights of up to 26N for χ axis and 10N for axis with 10kHz of sampling rate. The size of the haptic yawing joystick is so small that it can be assembled on armrest of an arm chair and has relatively larger work space than other conventional 2 DOF joysticks. For the haptic yawing joystick, an ellipse navigation algorithm using the user's velocity in the virtual navigation is proposed. The ellipse represents the velocity of the user. According to the velocity of the navigator, the ellipse size is supposed to be changed. Since the path width of navigation environments is limited, the ellipse size is also limited. The ellipse navigation algorithm is tested in 2 dimensional virtual environments. The test results show that the average velocity of the navigation with the algorithm is faster than the average navigation velocity without the algorithm.

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Video Segmentation and Video Segment Structure for Virtual Navigation

  • Choi, Ji-Hoon;Kim, Seong-Baek;Lee, Seung-Yong;Lee, Jong-Hun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.783-785
    • /
    • 2003
  • In recent years, the use of video in GIS is considered to be an important subject and many related studies result in VideoGIS. The virtual navigation is an important function that can be applied to various VideoGIS applications. For virtual navigation by video, the following problems must be solved. 1) Because the video route may be not exactly coincided with route that user wants to navigate, parts of several video clips may be required for single navigation. Virtual navigation should allow the user to move from one video to another at the proper position. We suggest the video segmentation method based on geographic data combined with video. 2) From a point to a destination, the change frequency of video must be minimized. The frequent change of video make user to mislead navigation route and cause the wasteful use of computing resource. We suggest methods that structure video segments and calculate weight value of each node and link.

  • PDF

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

실감의 가상 걸음을 위한 발판타입 이동인터페이스의 네비게이션 알고리즘 (A Navigation Algorithm using a Locomotion Interface with Programmable Foot Platforms for Realistic Virtual Walking)

  • 윤정원;류제하
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권6호
    • /
    • pp.358-366
    • /
    • 2006
  • 본 논문은 2개의 6자유도 제어가능 발판타입 플랫폼으로 이뤄진 이동인터페이스를 이용한 새로운 네비게이션 알고리즘을 제시하고 있다. 제안된 이동인터페이스는 2개의 플랫폼 위에 사람이 위치한 상태에서 사람의 걸음 모션을 센서시스템으로 예측하여 플랫폼 위에서 지속적인 걸음이 가능하도록 플랫폼을 제어하고 사용자 걸음 모션 정보를 가상환경에서의 네비게이션 입력정보로 사용한다. 따라서, 제안된 이동인터페이스는 사용자의 실제 걸음을 유도하고 걸음 동안 사용자에게 실감의 시각 피드백 제공으로 몰입감을 가지고 가상환경과 전신 운동의 상호작용을 할 수 있도록 허락한다. 이때, 가상환경 상에서 자연스런 네비게이션이 가능하도록 보행 분석에 사용되는 걸음 조건들을 사용하여 플랫폼 위에서의 자연스런 걸음 및 가상환경시스템에서의 자연스런 네비게이션이 가능토록 알고리즘을 제시하였다. 제안된 네비게이션 알고리즘 평가를 위해 3차원 객체모델러, 화면 매니져, 통신 매니져로 구성된 가상도시를 구축하여 발판타입 이동인터페이스에 네비게이션 알고리즘을 적용하였다. 실험 결과 평지 및 경사에서 사용자의 자연스런 걸음 및 시각 피드백이 가능함을 알 수 있었고, 제안된 이동인터페이스 및 네비게이션 알고리즘을 통해 다양한 형상의 가상지면에서 실감의 네비게이션이 가능함을 확인하였다.