• Title/Summary/Keyword: virtual force algorithm

Search Result 89, Processing Time 0.024 seconds

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

A Ftudy of Force Generation Algorithm Based on Virtual Environments (가상환경에서의 힘생성기법 연구)

  • 김창희;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1714-1717
    • /
    • 1997
  • A human operator is able to perform some tasks smoothly with force feedvack for the teleoperation or a virtual device in a the virtual environments. This paper describes a virtual force generation method with which operator can feel the interactive force between virtula robot and artificial environments. A virtual force generation algortihm is applied to generate the contact force at the arbitrary point of virtual robot, and the virtual force is displayed to the human operator via a tendon master arm consisted with 3 motors. Some experiments has beencarried out to verify the effectiveness of the force generation algorithm and usefulness of the developed backdrivable master arm.

  • PDF

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

3DOF Force-Reflecting interface (3자유도 힘 반향 역감장치)

  • 강원찬;박진석;김대현;신석두;김영동
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.71-75
    • /
    • 1999
  • In this paper, we present the 3DOF force-reflecting interface which allows to acquire force of object within a virtual environment. This system is composed of device, virtual environment model, and force-reflecting rendering algorithm. We design a 3 DOF force-reflecting device using the parallel linkage, torque shared by wire, and the controller of system applied by impedance control algorithm. The force-reflecting behaviour implemented as a function position is equivalent to controlling the mechanical impedance felt by the user. Especially how force should be supplied to user, we know using a God-Object algorithm. As we experiment a system implemented by the interface of 3D virtual object and 3DOF force-reflecting interface, we can feel a contact, non-contact of 3D virtual object surface and sensing of push button model.

  • PDF

3DOF Force-Reflection Interface (3자유도 힘 반향 역감장치)

  • 강원찬;김동옥;신석두;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.455-461
    • /
    • 1999
  • In this paper, we present the 3DOF force-rei1ecting interface which allows to acquire force of objc'Ct within a a virtual environment. This system is comlxlsed of device, virtual environment model, and force-rei1ecting r rendering algorithm. We design a J DOF force reflecting device using the pc$\alpha$allel linkage, torque shared by W wire, and the controller of system applied by impedance control algorithm. The force reflecting behaviour i implemented as a function position is equivalent to controlling the mechanical impedance felt by the user. E Especially how force should be supplied to user, we know using a God-Object algorithm As we experiment a system implement$\varepsilon$d by the interface of 3D virtual object and 3DOF force reJll'Cting i interface, we can feel a contact, non contact of :)D virtual object surface and sensin앙 of push button model.utton model.

  • PDF

Experimental Verification of 1D Virtual Force Field Algorithm on Uneven and Dusty Environment (비평지 및 먼지 환경에서 1차원 가상힘장 알고리즘의 실험적 검증)

  • Choe, Tok Son;Joo, Sang-Hyun;Park, Yong-Woon;Park, Jin-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2017
  • In this paper, we deal with the experimental verification of 1D virtual force field algorithm based reflexive local path planning on uneven and dusty environment. The existing obstacle detection method on uneven and dusty environment and 1D virtual force field based reflexive local path planning algorithm simply are introduced. Although the 1D virtual force field algorithm is verified by various simulations, additional efforts are needed to verify this algorithm in the real-world. The introduced methods are combined with each other, installed to real mobile platforms and verified by various real experiments.

Virtual Network Embedding based on Node Connectivity Awareness and Path Integration Evaluation

  • Zhao, Zhiyuan;Meng, Xiangru;Su, Yuze;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3393-3412
    • /
    • 2017
  • As a main challenge in network virtualization, virtual network embedding problem is increasingly important and heuristic algorithms are of great interest. Aiming at the problems of poor correlation in node embedding and link embedding, long distance between adjacent virtual nodes and imbalance resource consumption of network components during embedding, we herein propose a two-stage virtual network embedding algorithm NA-PVNM. In node embedding stage, resource requirement and breadth first search algorithm are introduced to sort virtual nodes, and a node fitness function is developed to find the best substrate node. In link embedding stage, a path fitness function is developed to find the best path in which available bandwidth, CPU and path length are considered. Simulation results showed that the proposed algorithm could shorten link embedding distance, increase the acceptance ratio and revenue to cost ratio compared to previously reported algorithms. We also analyzed the impact of position constraint and substrate network attribute on algorithm performance, as well as the utilization of the substrate network resources during embedding via simulation. The results showed that, under the constraint of substrate resource distribution and virtual network requests, the critical factor of improving success ratio is to reduce resource consumption during embedding.

Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots (GPU 기반 SIFT 방법과 가상의 힘을 이용한 이동 로봇의 위치 인식 및 자율 주행 제어)

  • Tak, Myung Hwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1738-1745
    • /
    • 2016
  • In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic Force (가상 탄성력을 이용한 자율이동로봇 경로생성 방법)

  • Kwon, Young-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • This paper describes a global path planning method and path optimization algorithm for autonomous mobile robot based on the virtual elastic force in a grid map environment. A goal of a path planning is information for a robot to go its goal point from start point by a effective way. The AStar algorithm is a well-known method for a grid based path planning. This paper suggest a path optimization method by a virtual elastic force and compare the algorithm with a orignal AStar method. The virtual elastic force makes a shorter and smoother path. It is a profitable algorithm to optimize a path in a grid environment.