• Title/Summary/Keyword: virtual environment generation

Search Result 156, Processing Time 0.034 seconds

3D Panorama Generation Using Depth-MapStitching

  • Cho, Seung-Il;Kim, Jong-Chan;Ban, Kyeong-Jin;Park, Kyoung-Wook;Kim, Chee-Yong;Kim, Eung-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.780-784
    • /
    • 2011
  • As the popularization and development of 3D display makes common users easy to experience a solid 3D virtual reality, the demand for virtual reality contents are increasing. In this paper, we propose 3D panorama system using vanishing point locationbased depth map generation method. 3D panorama using depthmap stitching gives an effect that makes users feel staying at real place and looking around nearby circumstances. Also, 3D panorama gives free sight point for both nearby object and remote one and provides solid 3D video.

Performance Evaluation and Development of Virtual Reality Bike Simulator (가상현실 바이크 시뮬레이터의 개발과 성능평가)

  • Kim, Jong-Yun;Song, Chul-Gyu;Kim, Nam-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.112-121
    • /
    • 2002
  • This paper describes a new bike system for the postural balance rehabilitation training. Virtual environment and three dimensional graphic model is designed with CAD tools such as 3D Studio Max and World Up. For the real time bike simulation, the optimized WorldToolKit graphic library is embedded with the dynamic geometry generation method, multi-thread method, and portal generation method. In this experiment, 20 normal adults were tested to investigate the influencing factors of balancing posture. We evaluated the system by measuring the parameters such as path deviation, driving velocity, COP(center for pressure), and average weight shift. Also, we investigated the usefulness of visual feedback information by weight shift. The results showed that continuous visual feedback by weight shift was more effective than no visual feedback in the postural balance control It is concluded this system might be applied to clinical use as a new postural balance training system.

BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION (BARAM: 전산유체 해석을 위한 가상풍동 시스템)

  • Kim, Min Ah;Lee, Joong-Youn;Gu, Gibeom;Her, Young-Ju;Lee, Sehoon;Park, Soo Hyung;Kim, Kyu Hong;Cho, Kumwon
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

Development of the Driving Simulator of High Speed Train based on the Concurrent Engineering Design Environment (동시공학설계환경에서의 고속철도 주행시뮬레이터 개발)

  • Jun, Hyun-Kyu;Park, Sung-Hyuk;Yang, Doh-Chul;Chung, Heung-Chai;Kwak, Young-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.423-429
    • /
    • 2004
  • The concurrent engineering technologies have been broadly used in the field of the design, testing, manufacturing and maintenance works to reduce development time and costs. For this purpose, many design environments with the product data management system, the virtual engineering system and web database system are developed. In this research, we developed the driving simulator of the KTX(Korea Train Express) as a basic study for building the concurrent engineering design environment of rolling stock. The virtual track was developed from the Seoul to the Busan and the Daejeon to Mockpo to generate immersible driving environment. Also. fault generation systems were developed to educate drivers of the KTX. We expect to reduce the time and costs of newly developed rolling stock using the design environment developed in the research.

  • PDF

Development of the arm mounted display VR system using spherical screen (구형 스크린을 이용한 준몰입형 VR 시스템 개발)

  • Suh, Myung-Won;Park, Dae-Yu;Cho, Ki-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.207-212
    • /
    • 2001
  • The virtual reality technology has been developed as the computer and computer graphic technology are progressed. However it has still the limits of the use because of it costs a great for system construction. A virtual reality technology is the best application example to reduce time and cost of development in engineering. Actually, VR(Virtual reality) technology has given engineers the ability to design, test and evaluate engineering systems in a virtual environment. The objective of this paper is to construct the arm mounted display VR system by using 3 channel spherical screen and to show its capabilities of an engineering system development. This paper describes the development of arm mounted display VR system with 3 channel spherical screen system and the generation of 3 channel graphic modules. The arm mounted display VR system provides a highly economical efficiency because of it uses a popular computer system as a graphic server.

  • PDF

Development of A Web-based Simulation System for Axi-Symmetric Deep Drawing (축대칭 디프드로잉 공정의 웹 기반 해석시스템 개발)

  • 정완진
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.550-557
    • /
    • 2003
  • In this study, a web-based system was developed by utilizing finite element method and virtual system designed using Virtual Reality Modeling Language (VRML). The simulation program for axi-symetric sheet forming is developed using finite flement method. The developed system consists of two modules, client module and server module. The client module was developed by using Active-X control. The input data for FEM calculation is transferred to the server module by using communication protocol. Then sever module performs several successive processes: input data generation, forming simulation, conversion of results to VRML format. After that, the results from the simulation can be visualized on the web browser in client computer. Besides, client module offers the capability to control and navigate on virtual forming machine and calculated result. By using this system simulation result can be investigated more realistically in virtual environment including forming machine.

A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic Force (가상 탄성력을 이용한 자율이동로봇 경로생성 방법)

  • Kwon, Young-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • This paper describes a global path planning method and path optimization algorithm for autonomous mobile robot based on the virtual elastic force in a grid map environment. A goal of a path planning is information for a robot to go its goal point from start point by a effective way. The AStar algorithm is a well-known method for a grid based path planning. This paper suggest a path optimization method by a virtual elastic force and compare the algorithm with a orignal AStar method. The virtual elastic force makes a shorter and smoother path. It is a profitable algorithm to optimize a path in a grid environment.

Proposal for Deep Learning based Character Recognition System by Virtual Data Generation (가상 데이터 생성을 통한 딥러닝 기반 문자인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.275-278
    • /
    • 2020
  • In this paper, we proposed a deep learning based character recognition system through virtual data generation. In order to secure the learning data that takes the largest weight in supervised learning, virtual data was created. Also, after creating virtual data, data generalization was performed to cope with various data by using augmentation parameter. Finally, the learning data composition generated data by assigning various values to augmentation parameter and font parameter. Test data for measuring the character recognition performance was constructed by cropping the text area from the actual image data. The test data was augmented considering the image distortion that may occur in real environment. Deep learning algorithm uses YOLO v3 which performs detection in real time. Inference result outputs the final detection result through post-processing.

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

Multiple Camera Calibration for Panoramic 3D Virtual Environment (파노라믹 3D가상 환경 생성을 위한 다수의 카메라 캘리브레이션)

  • 김세환;김기영;우운택
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.137-148
    • /
    • 2004
  • In this paper, we propose a new camera calibration method for rotating multi-view cameras to generate image-based panoramic 3D Virtual Environment. Since calibration accuracy worsens with an increase in distance between camera and calibration pattern, conventional camera calibration algorithms are not proper for panoramic 3D VE generation. To remedy the problem, a geometric relationship among all lenses of a multi-view camera is used for intra-camera calibration. Another geometric relationship among multiple cameras is used for inter-camera calibration. First camera parameters for all lenses of each multi-view camera we obtained by applying Tsai's algorithm. In intra-camera calibration, the extrinsic parameters are compensated by iteratively reducing discrepancy between estimated and actual distances. Estimated distances are calculated using extrinsic parameters for every lens. Inter-camera calibration arranges multiple cameras in a geometric relationship. It exploits Iterative Closet Point (ICP) algorithm using back-projected 3D point clouds. Finally, by repeatedly applying intra/inter-camera calibration to all lenses of rotating multi-view cameras, we can obtain improved extrinsic parameters at every rotated position for a middle-range distance. Consequently, the proposed method can be applied to stitching of 3D point cloud for panoramic 3D VE generation. Moreover, it may be adopted in various 3D AR applications.